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2. BOUNDARY CONTROL

2.1. Dirichlet control (I): Formulation of the control problem

We consider again the state equation

Oy .
5 +Ay=01in Q, (2.1)

where the second-order elliptic operator A is as in Section 1.1, and where
the control v is now a boundary control of Dirichlet type, namely

[ vonXy=Tyx(0,T),
vy= { 0 on X\, (22)
where ¥g is a (regular) subset of T'.
The initial condition is (for simplicity)
y(0) =0. (2.3)
In (2.2) we assume that
v € L?(Zo). (2.4)

Then, assuming that the coefficients of operator A are smooth enough (cf.
Lions and Magenes (1968) for precise statements), the parabolic problem
(2.1)—(2.3) has a unique solution such that

0
ye POTIHQ) (= XQ), o € POTHQ),  (25)
so that

y € C%0,T); H1(Q)). (2.6)

Remark 2.1 The solution y to (2.1)—(2.3) is defined, as usual, by transpo-
sition. Properties (2.5) and (2.6) still hold true if v € L2(0,T; H~V%(Ty))
(the notation is that used in Lions and Magenes (1968)).

Concerning controllability, the key result is given by the following:

Proposition 2.1 When v spans L?(Zy), the function y(T;v) spans a dense
subspace of H~1(Q).

Proof. We shall give a (nonconstructive) proof based on the Hahn-Banach
theorem. Consider, thus, f € H}(Q) such that

(W(T;v), f) =0, Vv € L*(Z0), (2.7)
where, in (2.7), (-, -) denotes the duality pairing between H~1(2) and H}(Q);
next, define ¢ by

—%—f+A*¢=0inQ, Y(T)=f, Y=00nX. (2.8)
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Multiplying both sides of the first equation in (2.8) by the solution {z,t} —
y(z, t;v) of problem (2.1)—(2.3) we obtain after integration by parts

WTs0), fy=— [ 22

20 871A*
where 0/0n 4~ denotes the conormal derivative operator associated with A*
(if A= A* = —A, then 0/0n4g = 0/9ns« = 0/0n where 8/0n is the usual
outward normal derivative operator at I'). Then (2.7) is equivalent to

oY /Ong» =0 on Xg. (2.10)

It follows from (2.8), (2.10) that the Cauchy data of i are zero on Xo;
using again the Mizohata’s uniqueness theorem, we obtain that ¢ = 0 in @,
so that f = 0, which completes the proof of the proposition. O

v drdt, (2.9)

We can now formulate the following approzrimate controllability problems
(where dX = dI"dt):

Problem 1. It is defined by
1
iri}f = | v*dZ, v e LA(%), y(T;v) € yr + BB_1, (2.11)
2o

where, in (2.11), yr is given in H~1(Q), 3 > 0, B_; denotes the unit ball
of H™1(Q) and t — y(¢;v) is the solution of (2.1)-(2.3) associated with the
control v.

Problem 2. It is the variant of problem (2.11) defined by
it (5 L vt am o) el (212)
where, in (2.12), k > 0, yr and y(T';v) are as in (2.11), and where
1/2
vy e B@), loll-1 = ([ (VoPdo
with ¢ the unique solutlon in HY(Q) o
/Qch . VOdz = (y,8), V0 € HL(Q).

Both problems (2.11) and (2.12) have a unique solution.

2.2. Dirichlet control (II): Optimality conditions and dual
formulations

We discuss first problem (2.12) which is simpler than problem (2.11). Let
us denote by Ji(-) the cost function in (2.12); using the relation

. Jr(v+0w) — Ji(v
(Je(v), w)2(zy) = Jim kl 9) k( ), wo,w € L3(%o),  (2.13)

870
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we can show that

(Jr(v), w)p2(sg) = /zo (U )

where, in (2.14), the adjoint state function p is obtained from v via the
solution of (2.1)—(2.3) and of the adjoint state equation

dp
N A+

) wd¥, Yo,w € L*(Xy), (2.14)

—%+A*p=0inQ, p=0on X,

p(T) € HY(Q) and — Ap(T) = k(y(T) — yr) in Q. (2.15)
Suppose now that u is the solution of the control problem (2.12); since
Ji(u) = 0, we have then the following optimality system satisfied by u and
the corresponding state and adjoint state functions:
u= 2y
Ona "

a—zt/—i—Ay:Oin Q, y(0)=0, y=0o0nX\YXpand y= 87:;* on Yo,
p 4
- L ap=0inQ, p=0on3, p(T) =1,
where f is the unique solution in H{(f) of the Dirichlet problem
—Af=k(y(T)—yr)inQ,f=0o0nT. (2.16)

In order to identify the dual problem of (2.12), we proceed as in the above
sections by introducing (in the spirit of the Hilbert Uniqueness Method) the
operator A € L(H(Q); H~1(Q)) defined by

Af =—@(T), Vf € H}(®), (2.17)
where the function ¢ is obtained from f as follows:
Solve first
a'l/) * . n n £
F +A*)=0inQ, ¥v=00nYX, ¢(T)=f (2.18)
and then,
2 +Ap=0inQ, ¢0)=0, p=0o0nX\Xy, ¢ = dd on ¥g. (2.19)
ot On g+
We can easily show that (with obvious notation)
o O
(Afi, f2) = YL 9% qrds, Vi, fae Hy (). (2.20)

o 8'!1,4* 3nA*

It follows from (2.20) that the operator A is self-adjoint and positive semi-
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definite; indeed, it follows from Mizohata’s uniqueness theorem that the op-
erator A is positive definite. However, the operator A is not an isomorphism
from HE(Q) onto H1(Q) (implying that, in general, we do not have ezact
boundary controllability here).

Back to (2.16) we observe that from the definition of A we have y(T) =
—Af, which implies in turn that f is the unique solution in H{ () of

—k7IAf+Af = —yr. (2.21)

Problem (2.21) is precisely the dual problem we are looking for. From
the properties of operator —k~!A + A, problem (2.21) can be solved by a
conjugate gradient algorithm operating in the space HE(Q); we shall return
to this issue in Section 2.3.

Let us consider the control problem (2.11); using the Fenchel-Rockafellar
convex duality theory as in the above sections, we can show that the solution
u of problem (2.11) is characterized by the following optimality system

Op

u = 8—nA:‘an (2.22)
Ay P _ _ _ 0op
—+Ay=0inQ, y(0)=0,y=00nX\Xpandy= on Xy, (2.23)
ot on 4+
Op | s :
—E+Ap:01nQ, p=0on X, p(T)=f, (2.24)

where f is the unique solution of the following variational inequality (with
10y = (o IV FI7dz)'/2, Vf € H3(9)):

feH§(Q), ) A
Af f =0+ B e — B lgae + (o, f = f) 2 0, ¥f in Hy().
(2.25)
Problem (2.25) is precisely the dual problem to (2.11). The solution of
problem (2.25) will be discussed in Section 2.3.

2.3. Dirichlet control (III): Iterative solution of the control
problems

2.3.1. Conjugate gradient solution of problem (2.12)
It follows from Section 2.2 that solving the control problem (2.12) is equiv-
alent to solving the linear equation

Ji(u) =0, (2.26)

where operator J;, is defined by (2.1)-(2.3), (2.14), (2.15). It is fairly easy
to show that the linear part of operator J;, namely

v JL(’U) - Jl/c(o)a



164 R. GLOWINSKI AND J.L. LIONS

is symmetric and strongly elliptic over L?(Xg). From these properties, prob-
lem (2.26) can be solved by a conjugate gradient algorithm operating in the
space L%(Xp). It follows from Section 1.8.2 that this algorithm is as follows.

Description of the conjugate gradient algorithm:
u? is given in L%(Zg); (2.27)

solve

oy°
5 +A4°=0inQ, %0)=0, ¢° =2 on Ty, y° =0 on T\%, (2.28)

and then
0 € Hy(Q),
U LA L) — ) m (2:29)
and finally
68‘1; + AP’ =0inQ, p’=0o0onx, p°(T)=f" (2.30)
Set
K
gO = uO — Ona- ‘an (231)
and then
w® = ¢°. (2.32)
For n > 0, assuming that u™, g", w" are known, compute u™+!, g"*!,
w™t! as follows:
Solve
agt +AF"=0inQ, F(0)=0, 5 = w" on Lo, §" = 0 on £\Z, (2.33)
and then
f* € Hy(9),
N (2:34)
and finally
aﬁn * —T1 . —n -n m
—5t—+Ap=01nQ, p*=0o0n %, p™(T) = f~ (2.35)
Compute
_ 8}.7)"
=" — 2.36
g w anA lZoa ( 3 )
and then

P = [g”lzdl“dt// g™ dT dt, (2.37)
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u" =™ — pLuw”, (2.38)
gn+1 — gn _ pngn. (2.39)
If ||gn+1HL2(20)/||90”L2(20) < € take u = u™t1, else compute
Tn = ||gn+1||%2(20)/“9n||21,2(20) (2.40)
and update w™ by
wn+1 — gn—H +,ann‘ (2_41)

Don=n+1 and go to (2.33).

Remark 2.2 The number of iterations necessary to obtain the convergence
varies here too, as k}/2Ine™1/2.

2.3.2. Conjugate gradient solution of the dual problem (2.21)
We mentioned in Section 2.2 that the dual problem (2.21), namely

~kTIAf +Af = —yr,

can be solved by a conjugate gradient algorithm operating in the space
H}(9); from the definition of operator A (see (2.17)—(2.19)), and from Sec-
tion 1.8.2, this algorithm takes the following form:

£ is given in HE(Q); (2.42)
solve
op° «.0 ~ 0 0 0
—Wﬁ-A =0inQ, p =0o0nX p’(T)=f", (2.43)
and
0 0
% +4°°=0inQ, 3°0)=0, y¥°=0o0nX\X, = op on Y.
ot a’I’LA*
(2.44)
Solve now

¢° € Hy (),
/ Vg’ Vzde = k‘l/ V0 Vzde+ (yr —y*(T),2), Vz € Hy(Q),
Q Q

(2.45)
and set
w = ¢°. (2.46)
Then, forn > 0, assuming that f*, g", w™ are known, compute f**+1, g"+1,
w™ as follows:
Solve
81—)” * =71 : I~ I~ n
—-;97+Ap =0inQ, p"=0onZX% p"(T)=w", (2.47)
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and
n 5
aait +A7"=0in@, §*(0)=0, " =0o0n X\Xgy, 7" = 8:,4* on Xg.
(2.48)
Solve now

g" € Hy(9),
/ V" Vads— k‘l/ Vo' Vade — (5°(T), 2), ¥z € HY(Q).
Q Q

(2.49)
Compute
Pn = / |Vg"|2d:v// Vi§" Vuw"dz (2.50)
Q Q
and then
=" = ppw®, (2.51)
g" = g" — png™. (2.52)

If Hg"“||H3(Q)/||90”H3(Q) < € take f = f™*! and solve (2.24) to obtain
u = Op/Ona-|x,; if the above stopping test is not satisfied, compute

wn:/ |Vgn+1|2dx// Vg™ |2 dx (2.53)
Q Q

and then

w™t = g™ ™ (2.54)
Don=n+1 and go to (2.47).
Remark 2.3 Remark 2.2 still holds for algorithm (2.42)-(2.54).

The finite element implementation of the above algorithm will be dis-
cussed in Section 2.5, while the results of numerical experiments will be
presented in Section 2.6.

2.8.8. Iterative solution of problem (2.25)
Problem (2.25) can also be written as
—yr € Af + BIj(f), (2.55)

which is a multivalued equation in H~1(2), the unknown function f belong-
ing to H}(Q); in (2.55), 85(f) denotes the subgradient at f of the convex
function j : Hj(£2) — R defined by

ih=([1wsea)”, vie my@

Problem (2.25), (2.55) is clearly a variant of problem (1.237) (see Sec-
tion 1.8.8) and as such can be solved by those operator splitting methods
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advocated in Section 1.8.8. To derive these methods we associate with the
‘elliptic problem’ (2.55) the following initial value problem

0
Z(-A i(f) = —
{ e (-AT) £ AS £ 335(f) = o, 2.56)
F(0) = fo(e Hg(2),
where, in (2.56), 7 is a pseudo-time.
To capture the steady-state solution of (2.56) (i.e. the solution of problem

(2.25), (2.55)) we can approximately integrate (2.56) from 7 = 0to 7 = +o00
by a Peaceman-Rachford scheme, like the one described just below:

f% = fo givenin HL(Q); (2.57)
then, for m >0, compute f™1/2 and f™+1, from f™, by solving in H3(Q)
the following problems:

(=AfmH2) — (-Af™)

ArT2 +BOj(f™Y2) + Af™ = —yr, (2.58)

and
(—Afm+1) . (—Afm+1/2)
AT/2

where A7(> 0) is a (pseudo) time discretization step.

As in Section 1.8.8, for problem (1.237), the convergence of {f™}m>0 to
the solution of (2.25), (2.55) is a direct consequence of P.L. Lions and B.
Mercier (1979), Gabay (1982; 1983) and Glowinski and Le Tallec (1989);
the convergence results proved in the above references apply to the present
problem since operator A (respectively functional j(-)) is linear, continuous
and positive definite (respectively conver and continuous) over H} (). As
in Section 1.8.8, we can also use a f-scheme to solve problem (2.25), (2.55);
we shall not describe this scheme here since it is a straightforward variant of
algorithm (1.242)—(1.245) (actually such an algorithm is described in Carthel
et al. (1994), where it has been applied to the solution of the boundary
control problem (2.11), (2.25) in the particular case where I'g = I).

Back to algorithm (2.57)—(2.59) we observe that problem (2.59) can also
be written as

_Afm+1 +2Afm+1/2 ——Afm
AT/2

Problem (2.60) is a particular case of problem (2.21); it can be solved
therefore by the conjugate gradient algorithm described in Section 2.3.2.
Concerning the solution of problem (2.58), we observe that the solution of
a closely related problem (namely problem (1.343) in Section 1.10.4) has
already been discussed; since the solution methods for problem (1.343) and

+ BOF(fmHYB) + AfH =y, (2.59)

+ Af™HL = AT (2.60)
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(2.58) are essentially the same we shall not discuss the solution of (2.58)
further.

2.4. Dirichlet control (IV): Approximation of the control
problems

2.4.1. Generalities and synopsis

It follows from Section 2.3.3 that the solution of the state constrained
control problem (2.11) (in fact of its dual problem (2.25)) can be reduced
to a sequence of problems similar to (2.21), which is itself the dual problem
of the control problem (2.12) (where the closeness of y(T') to the target yr
is forced via penalty); we shall therefore concentrate our discussion on the
approximation of the control problem (2.12), only.

We shall address both the ‘direct’ solution of problem (2.12) and the
solution of the dual problem (2.21).

The notation will be essentially as in Sections 1.8 and 1.10.6.

2.4.2. Time discretization of problems (2.12) and (2.21)

The time discretization of problems (2.12) and (2.21) can be achieved us-
ing either first-order or second-order accurate time discretization schemes,
very close to those already discussed in Sections 1.8 and 1.10.6 (see also
Carthel et al. (1994, Sections 5 and 6)). Instead of essentially repeating the
discussion which took place in the above sections and reference, we shall
describe another second-order accurate time discretization scheme, recently
introduced by Carthel (1994); actually, the numerical results shown in Sec-
tion 2.6 have been obtained using this new scheme.

The time discretization of the control problem (2.12) is defined as follows
(where At = T/N, N being a positive integer):

Mi At 2.61
vehmn e (V) (2.61)

where v = {v"}¥-! and
At k
Tev) =5 2 anllv" ey + 519" —wrllls; (2.62)
n=1

in (2.62) we have a, = 1 for n = 1,2,...,N — 2, ay—1 = 3/2 and yV
obtained from v as follows:

¥ =0; (2.63)
to obtain y! (respectively y™, n = 2,..., N—1) we solve the following elliptic
problem

y! — o0

+ A2y +1%) =0inQ, y' =v'onTly, y* =00n\Tp (2.64)

At
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(respectively
3 - 92 n—1 1,Mn—2
2y yAt + 3y +Ay" =0in Q, y"=v"on Ty, y" =0on'\Iy);
(2.65)
finally y? is defined via
ouN _ 3yN-1 4 N-2
Yooy Y T N, (2.66)

At

Problem (2.61) has a unique solution.

In order to discretize the dual problem (2.21) we look for the dual problem
of the discrete control problem (2.61). The simplest way to derive the dual
of problem (2.61) is to start from the optimality condition

VJA ub) = 0, (2.67)

where, in (2.67), u?t = {u" 7]212—11 is the solution of the discrete control
problem (2.61), and where VJkAt denotes the gradient of the discrete cost
function J2t. Suppose that the discrete control space U4t = (L2(Tg))V 1
is equipped with the scalar product

N-1
(v,w)ar = At Z an/ v*w™dl, Vv, w € UL (2.68)
n=1 Lo

then a tedious calculation will show that Vv, w € U2

(VIR (v), W)a
N-2 apn
:AthZI/FO(u _BnA*)w dar

3 _ 20pN-1 1 gpVN _
A N-1_ 2 = N-14r, (2.6
+2 t/po |:U <3 on 4» + 3 On g« v , (269)

where, in (2.69), the adjoint state vector {p"}_; belongs to (H(2))N and
is obtained as follows.
First, compute p"V as the solution in H}(Q) of the elliptic problem

- ApN = k(yN —yr) in Q, pY =0onT, (2.70)
then pV~1 (respectively p?, n = N —2,...,2,1) as the solution in Hg () of
the elliptic problem

PP Ny ) =0ma, PN l—0onl (271
T+ Zp" T +1ip")=0inQ, p =0 on (2.71)
(respectively
%pn _ zpn+1 + %pn+2
At

+ A" =0inQ, p"=0onT) (2.72)
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Combining (2.67) and (2.69) shows that the optimal triple

{uAt, {yn nN=1’ {Pn}f:I:l}

is characterized by

o™ | . Ne1 20pN-1 1 9pN
" fn=1,... N—-2 =z -

u 8nA»= |F0 Hn 9 ’ y u 3 anA* + 3 6nA* FO’

(2.73)
to be completed by (2.70)-(2.72) and by
y’ =0, (2.74)
y' -y’

Ai +AGRY +1%) =0inQ, y'=wlonTy, y'=00nT\Iy, (2.75)

%yn . 2yn—1 + %yn—2

+AYy"=0inQ, y"=u"onTy y"=0o0nT\Iy

At
(2.76)
ifn=2,...,N-—1,
2,yN _ 3yN—l +yN—2 N-l_
N + ANl =0, (2.77)
Following Section 2.2 we define A%t € L(H(Q), H™1(R)) by
ABf = g, Vf e HL(Q), (2.78)

where ¢V is obtained from f via the solution of the discrete backward
parabolic problem

o =1, (2.79)
QzN_l_li’N+A*(Zz[/\’—1+lquN)—O' Q, ¢V 1=0onT, (2.80)
AT 2 1 =0in §, =0onl, (2

3N — 2t 4 Lynt2 . R
Y wAt 3% + A" =0inQ, Y"=0onTl (2.81)
for n =N —2,...,1, and then of the discrete forward parabolic problem

¢° =0, (2.82)

~1 A0 Hl
o —¢ , , : .1 O X
Y + A+ %) =0inQ, ¢'= na on Iy, ¢! =0 on I'\Ty,
(2.83)
3pn — 9pn—1 4 15n—2 un
20T 20" T Asr—0in, ¢" =2 onTy, ¢" = 0onT\Iy
At BTLA*

(2.84)
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ifn=2,...,N—2,

$pN=1 —2pN=2 4 15N -3
¥ SOAt + 30 + AV 1 =0in Q,
299N-1 199V
GN-1 v L on Iy, 4Vt =0 on I'\Ty, (2.85)

- g (911,4* §8nA*
2¢N_3¢N—1+ AN-2

¥ AN-1
AP ) .
A + =0 (2.86)
We can show that (with obvious notation) we have, Vf1, fo € H3(Q),
oYY O 3 20y 109y
ABtg _ [ / 1 2 gr4 2 20y Loy
A S fo) Z To anA* On g+ + 2 Jro \ 3 Ona- + 3 On g«

209Y1  109)
y (3 o *‘3anA* dF], (2.87)

where, in (2.87), (-,-) denotes the duality pairing between H~(Q) and
H}(Q).

It follows from (2.87) that operator A2¢ is self-adjoint and positive semi-
definite over H}(Q).

Back to the optimality system (2.70)—(2.77), let us denote by f2¢ the
function p?; it follows then from the definition of A*? that (2.70) can be
reformulated as

N e (2.88)

which is precisely the dual problem we have been looking for. The full
space/time discretization of problems (2.12) and (2.21) will be discussed in
the following.

2.4.8. Full space/time discretization of problems (2.12) and (2.21)

The full discretization of control problems, related to (2.12) and (2.21),
has been already discussed in Sections 1.8.4 and 1.10.6. Despite many simi-
larities, the boundary control problems discussed here are substantially more
complicated to fully discretize than the above distributed and pointwise con-
trol problems. The main reason for this increased complexity arises from
the fact that we still intend to employ low-order finite element approxima-
tions — as in Sections 1.8 and 1.10 — to space discretize the parabolic state
problem (2.1)-(2.3) and the corresponding adjoint system (2.15). With such
a choice the ‘obvious’ approximations of 9/8n a+|r, will be fairly inaccurate.
In order to obtain second-order accurate approximations of 8/0na-|r,, we
shall rely on a discrete Green’s formula, following a strategy which has been
successfully used in, e.g., Glowinski et al. (1990), Glowinski (1992a) (for the
boundary control of the wave equation) and Carthel et al. (1994) (for the
boundary control of the heat equation).
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We suppose for simplicity that Q is a bounded polygonal domain of R2.
We introduce then, as in Sections 1.8.4. and 1.10.6, a triangulation T of Q
(h: largest length of the edges of the triangles of 7;,). Next, we approximate
HY(Q),L?%(Q) and H(Q) by

Hj, = {zn|zn € C°(Q), 2nlr € P1,VT € Th}, (2.89)
Hgy, = {znl2n € Hy, 2, = 0 on T}(= Hy(Q) N Hy), (2.90)

respectively (with, as usual, P; the space of polynomials in z1, 2 of degree
< 1). Another important finite element space is

Vor = {zn | zn € H}, zr, = 0 on T'\T'p}; (2.91)

if fr\ro dI' > 0 we shall assume that those boundary points at the interface

of g and T'\T'g are vertices of 7. Finally, the role of L?(I'y) will be played
by the space M} (C Vyp,) defined as follows:

MhEBHéh=Vbh, tn € Mp = pp |[r=0, VT € T, suchas 8T NT =0.
(2.92)
Space Mj, is clearly isomorphic to the boundary space consisting of the
traces on I' of those functions belonging to Vyp; also, dim(Mp) is equal to
the number of 7, boundary vertices interior to I'g and the following bilinear
form

{)‘ha#h}—’/r Apptr, AT
0

defines a scalar product on My,

Since the full space/time discretization of problems (2.12) and (2.21) will
rely on variational techniques, it is convenient to introduce the bilinear form
a: HY() x H} () — R defined by

a(y, z) = (Ay, 2), Yy € HY(Q), Yz € H(Q), (2.93)

where (-, -) denotes the duality pairing between H~1(2) and H}(9). Assum-
ing that the coefficients of the second-order elliptic operator A are sufficiently
smooth we also have

aly, z) = /Q(A*z)ydx—l—/r aii*ydl“, Yy € HY(Q), Vz € HY Q)N HY(Q),

(2.94)
which is definitely a generalization of the well-known Green’s formula

/Vy-Vzdx —_ / Azydw+/ 9z 4T, vy € HY(Q), ¥z € HAQ)NHA(Q).
Q 0 r on

Following Section 2.4.2 we approximate the control problem (2.12) by
Min J(v), (2.95)

veupt
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where, in (2.95), we have UPt = (Mp)V-1, v = {v"}V} and
Al n2 k N2
= — E r+—- [ |V d 2.96

with, in (2.96), ¢ obtained from v via the solution of the following well-
posed discrete parabolic and elliptic problems

Parabolic problem.
'’ =0; (2.97)

compute y! from
{ yt € Von, y' = v' on Ty,

y' =" 1 0 1
/Q A7 zdr+a(2y” + Ly ,2) =0, Vz € Hy,

(2.98)

then y™ from

{y E%ha =" OnFO’

2 n—1 -2
/ yrt sy zdz +a(y", z) =0, Vz € Hy),
Q At

forn=2,...,N —1, and y" from
yY € HE,
Q At

(2.99)

2.100
zdz+a(yN 1, 2) =0, Vz € HY,. ( )

Elliptic problem.

{ oV € HE,,

/ VoV . Vzdz =/(yN —yr)zdz, Vz € H&h. (2.101)
Q0 Q

We then have the following

Prop081t10n 2.2 The discrete control problem (2.95) has a unique solu-
tion upt = {u"},> NoL If we denote by yot = {y"}_, the solution of (2.97)-
(2.100) assoczated wzth v = uft, the optimal pair {uh , Yot} is character-
ized by the ezistence of prt = {p"}_; € (H,)N such that

P € Hp, 2.102
/VpN-Vzdz:k:[/ yde:c—<yT,z>J, Vz € Hgp, (2.102)
Q Q
((-,-): duality pairing between H=1(Q) and H(}(Q)),
pN_tvelH(%m
-1 _ 2.103
/ p——‘At—pZ d.'I: + a(z, %pN_l + %pN) = Ov VZ € H(%h? ( )
Q



174 R. GLowiINskI AND J.L. LIONS
p" € H},,
At
form=N—-2,...,1, and also

u™ € My,
3pn — 9 n+1 1,n+2
Au”udF:/ﬂ”v P~ t+ap pdz + a(p,p™), Yu € My
0

2.104
zdz + a(z,p") =0, Vz € H}, ( )

At
(2.105)
ifn=1,2,...,N —2, and finally
uN-1l e My,
pVt—p" N-1 N
/uN”ludl“:/ ————udz +ap, 2p" T + ip7), Yu € My,
r Q At

(2.106)

Proof. The existence and uniqueness properties are obv1ous Concerning
now the relations characterizing the optimal pair {uh ,yh t} they follow
from the optimality condition

VJA (uft) = 0, (2.107)

where V. J2! is the gradient of the functional J2¢. Indeed, if we use
(v,w)ar = At Z an/ v w™ dl
= Lo

as the scalar product over U2, it can be shown that, Vv, w € U2, we have

(VJ‘“() W)A
n_zpn+l+lpn+2

= At [fr v dl — [, 2P 2 —w"dz — a(w",p")

+2At{fro N-1yyN-1qT — [, B =PX gy N-14g
—a(wN_l,gpN‘1+§pN) , (2.108)

where, in (2.108), {p"}-! is obtained from v = {v"}¥-! via the solution
of the discrete parabolic and elliptic problems (2.97)-(2.100), (2.102) and
(2.103), (2.104). Relations (2.107) and (2.108) clearly imply (2.102)—(2.106).

Remark 2.4 Relations (2.105), (2.106) are not that mysterious. For the
continuous problem (2.12), we know (see Section 2.2) that the optimal con-
trol u satisfies
9p
On a»

on Xg, (2.109)

where p is the solution of the corresponding adjoint system (2.15). We have
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thus 9p/0t = A*p, which combined with Green’s formula (2.94), implies
that a.e. on (0,7) we have

/r uusz—/ﬂ%udxﬁ-a(u,p), Vu € HY(Q), 1 =0onT\Iy. (2.110)
0

Relations (2.105), (2.106) are clearly discrete analogues of (2.110).

To obtain the fully discrete analogue of the dual problems (2.21) and (2.88)
we introduce ALY € L(HY,, HY,) defined as follows

AR = —¢N, Vf € Hy, (2.111)

where ¢V is obtained from f via the solution of the fully discrete backward
parabolic problem

UAES§ (2:112)
U}N—l € H(%h’
pN-1 _ N R R 2.113
/Q%zdx +a(z, 2N+ 19V) = 0, Vz € HY, (2.113)
,&n € H(}ha
3™ — Pl L 14n+2 . 2114
/ 1d i L zdz + a(z,¥") =0, Vz € H, ( )
Q At
forn=N—-2,...,1, and then of the fully discrete forward parabolic problem
$° =0, (2.115)
@1 € VOfU ()51 = ,al on FO,
pl— 30 2.116
14 Atso zdx + a(%cﬁl + %@Oyz) = 0’ Vz € H(%h,» ( )
@™ € Vop, ¢" = 14" on Iy,
3pn —gpn—1 4 1.,5n—2 2.117
/ W i drtaleh ) =0, VeeHy D)
Q At
forn=2,...,N —1, and finally
- E}{,I(}h, N-1 N-2
207 — 37~ oY 2.118
/ L 3¢ + zdz+a(@V 1 2) =0, Vz € Hyp; ( )
0 At
in (2.116), (2.117) the vector {@"}=! is defined from {4)"}_; as follows
" € My,
3™ — 1 4 12 N
/ ﬂ"NdF:/ Akl M L pdz + alp, ¥™), Vi € My,
To Q At

(2.119)
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ifn=1,2,...,N -2, and

AN—l c Mh)

IN—1 _ N
/ GVl dl = /uudx (2.120)
o
+a(p, 2PN+ 19N), Vi € M.

We can show that
N-1

/( 'f1)fadz = At Z an/ uTul dU, Vi, f2 € Hyy, (2.121)

where, in (2.121), {u?}Y!, i = 1,2 is obtained from f; via (2.112)-(2.114),
(2.119), (2.120).

It follows from (2.121) that operator A2* is symmetric and positive semi-
definite over H},. O

Let us consider now the optimal triple {uh ,yh ,pht} and define fAt €
Hh by

At =pV. (2.122)
It follows then from Proposition 2.2 and from the definition of Aft that
AREFAt = . (2.123)

Combining (2.123) with (2.102) we obtain

f hA e H&m
k-1/ VM. Vode +/ ABEFAL, G0 (yr 2, Yz e HY,. (2124
Q Q

Problem (2.124) is precisely the fully discrete dual problem we were looking
for. From the properties of A2t (symmetry and semi-positiveness), problem
(2.124) can be solved by a conjugate gradient algorithm operating in H&h
(a fully discrete analogue of algorithm (2.42)—(2.54)); we shall describe this
algorithm in Section 2.5.

Remark 2.5 From a practical point of view, it makes sense to use the
trapezoidal rule to (approximately) compute the various L?(Q2) and L?(Tg)
scalar products occurring in the definition of the approximate control prob-
lem (2.95), and of its dual problem (2.124). If this approach is retained,
the corresponding operator Aft has the same basic properties as that de-
fined by (2.111), namely symmetry and semi-positiveness, implying that the
corresponding variant of problem (2.121) can also be solved by a conjugate
gradient algorithm operating in the space H(}h.
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2.5. Dirichlet control (V): Iterative solution of the fully
discrete dual problem (2.124)

We have described in Section 2.3 a conjugate gradient algorithm for solving
the control problem (2.12), either directly (by algorithm (2.27)—(2.41); see
Section 2.3.1) or via the solution of the dual problem (2.21) (by algorithm
(2.42)—(2.54); see Section 2.3.2). Since the numerical results presented in
the following section were obtained via the solution of the dual problem
we shall focus our discussion on the iterative solution of the fully discrete
approximation of problem (2.21) (i.e. problem (2.124)). From the properties
of AP problem (2.124) can be solved by a conjugate gradient algorithm
operating in the finite dimensional space H(}h. From Sections 1.8.2 and 2.3.2
this algorithm takes the following form:

fo is given in Hgp; (2.125)
set
Py = fo (2.126)
and solve first
8 ‘J)V_lNiHéh’N (2.127)
/uzdm+a(z, 2pN =1 4+ 1) = 0, Vz € H}, '
Q At
and
ué\/—l € My,
L v pdl= ) = T+ a(p,3pp  +35p0 ), Vi € My,
0
(2.128)
and then forn=N —-2,...,1
pg < H(%h, n+1 n+2 2.129
3ph — 9 1 .
/ 2P0 — 2P0+ 2P0 zdz + a(z,p}) = 0, Vz € Hyy, ( )
Q At
u()‘ € Mh,
3pn _ 9pntl 4 1n+2
/F ugpdl =/Q et pOAt T304y + a(p, pl), Vi€ My,
0
(2.130)

Solve next the following fully discrete forward parabolic problem
yo =0, (2.131)

y(% € ‘/Oh.v y(% IU(% on FO,
(2.132)

1_,0
/n DBz de + a3y + 193,2) = 0, ¥z € HY,
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Y5 € Von, 4§ = uf on T,
{ / 30— 20+ 31U zdz +a(yg,z) =0, Yz € H, (2.133)
Q At
forn=2,... . N —1 and finally
Yo € ]I:—]I(}hv N L
{ / 200 — 3y "+ cde +a(ud ) = 0, V2 € HL,. (2.134)
Q At
Solve now
go € H(}h»
{ / Vo Vzdz = k—l/ Vo Vzdz+ (yr, 2) —/ W2 dz, Yz € HY,
. ? ? (2.135)
and set
wo = go- (2.136)

Then for m > 0, assuming that fm, gm, wm are known, compute fmi1,
Im+1, Wmy1 as follows:

Take
_N _
Dy = Wy (2.137)
and solve
ﬁm_ivelH(%hv ( )
Dy — D _N— 2.138
/Q———Tmzdm—%—a( 2,250t 4+ 1p0) = 0, Vz € HY,
and
—N 1 c Mh,
/F a1 dr — / ‘pmudx+a(u, 25N 11 1pN) = 0, Vs € My,
(2.139)
and then forn=N—2,...,1
ﬁ?n N H(%h’ +1 +2
3pn — 20 150 2.140
[ AT S o) =0, Vee HY, 1Y)
Q At
Uy, € My,
§ _2 =n+1 1742
/ midl = / 2P p + 2P d + a(p, 1), V€ My,

(2.141)
Solve next the following discrete forward parabolic problem

g2, =0, (2.142)
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m € Von, Jm = Ty, on Lo,
gL — 78 2.143
y—"‘ry’”—z dx + a(%gj,ln + %372” z) =0, Vz € H};, ( )
Q
Ym € Vor, Y = Unm, on o,
ggn —9gn—1 4 1gn—2 2.144
/ n = Wi+ 3V qpya@n ) =0, vee HY )
Q At
forn=2,....N —1, and finally
i € Hoy 2.145
/9(217% a4 g e de + Ata(gl 1, 2) =0, Vz € HY, (14D
Solve now
gm € HYp,
/ng-Vzdm=k_1/ Vwm~Vzdm—/ 7Nz dz, Vz € HY,,
Q Q Q
(2.146)
and compute
P = / IV g2 dz / / Vi - Vo dz, (2.147)
Q Q
fm+1 = fm = PmWm, (2.148)
Im+1 = 9m — PmIm- (2.149)

If Hgm+1HH(}(Q)/“gO”Hé(Q) < ¢ take fE = fmy1 and solve (2.112)—(2.120)

with f = fAt to obtain udt = {u?}N71; if the above stopping test is not
satisfied, compute

7m=/ |V9m+1)2dx// |V gm|? dz, (2.150)
Q Q

and then
Wm+1 = Gm+1 + YmWm- (2.151)
Do m=m+1 and go to (2.137).

Remark 2.6 Algorithm (2.125)—(2.151) may seem complicated (27 instruc-
tions); in fact it is quite easy to implement since it essentially requires a fast
elliptic solver; for the calculations presented in Section 2.6 we have been us-
ing a multigrid based elliptic solver (see, e.g., Hackbush (1985), Yserentant
(1993) and the references therein for a thorough discussion of the solution
of discrete elliptic problems by multigrid methods).

Remark 2.7 If h and At are sufficiently small Remarks 2.2 and 2.3 still
hold for algorithm (2.125)—(2.151).
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2.6. Dirichlet control (VI): Numerical experiments

2.6.1. First test problem

The first test problem is one for which the exact controllability property
holds; indeed, to construct more easily a test problem whose exact solution
is known we have taken a nonzero source term in the right-hand side of the
state equation (2.1), obtaining thus

Oy

5t + Ay = s in Q, (2.1
and also replaced the initial condition (2.3) by
y(0) = %o, (2.3)'

with yo # 0. For these numerical experiments we have taken 2 = (0,1) x
(0,1), To=T, T=1and A = —vA, with v > 0 ((2.1)’ is therefore a heat
equation); the source term s, the initial value yo and the target function yr
are defined by

s(z1,x2,t) = 37r31/e2”2”t(sin X1 + sinmwxy), (2.152)
yo(z1,x2) = w(sinwzx; + sinwxy), (2.153)
yr(x1,z2) = 7re2”2"(sin 7x1 + sinwxe), (2.154)
respectively.
With these data the (unique) solution u of the optimal control problem
Mi 2.1
vebr; J(v) (2.155)
(with

J(v) = %/zh)]?dl“dt,

U = {v|ve LX), the pair {v,y}
satisfies (2.1)',(2.2), (2.3) and y(T) = yr})

is given by
u(zy,x2,t) = re?™ Vtsinmz; if 0 < 21 <1 and 29 = 0 or 1,
{ u(xy,x2,t) = re?™ Vtsinmre if 0 <o <1and z; =0or 1, (2.156)
the corresponding function y being defined by
y(z1, T2, t) = me®™ “i(sin wz1 + sin 7xa). (2.157)

Concerning now the dual problem of (2.155) we can easily show that it is
defined by

Af =Yo(T) —yr, (2.158)
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Fig. 1. A regular triangulation of (0,1) x (0,1).

where operator A is still defined by (2.17)—(2.19) and where the function Yp
is the solution of

Y
% +AYy=son Q, Yo(0) =1y, Yo=0o0nX. (2.159)

Since the data have been chosen so that we have exact controllability, the
dual problem (2.158) has a unique solution which, in the particular case
discussed here, is given by

2

flz1,22) = me * sin w2y sin Ts. (2.160)

To approximate problem (2.158) (and therefore problem (2.155)) we have
used the method described in Sections 2.3 to 2.5, namely: time discretiza-
tion by a second-order accurate scheme, space discretization by finite el-
ement methods (using regular triangulations 7j like the one in Figure 1)
and iterative solution by a trivial variant of algorithm (2.125)-(2.151) (with
k = 4+00) with e = 1074 for the stopping criterium.

The above solution methodology has been tested for various values of h
and At; for all of them, we have taken v = 1/27%(= 5.066059... x 1072).
On Table 1 we have summarized the results which have been obtained (we
have used a * to indicate a computed quantity). All the calculations have
been done with fy = 0 as initializer for the conjugate gradient algorithms.

The results presented in Table 1 deserve some comments:

1  The convergence of the conjugate gradient algorithm is fairly fast if we
keep in mind that the solution f,‘}t of the discrete problem which has
been solved can be viewed as a vector with (31)2 = 961 components
if h = At = 1/32 (respectively (63)? = 3969 components if h = At =
1/64).

2 The target function yr has been reached within a good accuracy, similar
comments holding for the approximation of the optimal control u and

of the solution f to the dual problem (2.158).
3  For information, we have [|u/||2(s) = mve? — 1 = 7.94087251 ... and

1£1l 3 ) = me/v/2 = 6.03850398... .
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Table 1. Summary of numerical results.

h=At=% h=At=4

Number of iterations 10 11

7 = yrll-1 224 x 10~ 1.78 x 10~5
lyzll-1

||U*||L2(2) 7.791 7.863

e — ullze(zy 250 x 1073 1.21x 1073
lullzzs)

IF* W 21202) 6.07 6.041

15— fllaze 244 x 1072 2.85 x 1072
I f ”Hf(ﬂ)

If* = flle2 ) 6.53 x 10~ 7.02 x 103
I £llz2(e)

On Figures 2 and 3 we have compared yr(z1,0.5) (...) and yj(z1,0.5)
(—) for z; € (0,1) and h = At = 1/32, h = At = 1/64, respectively;
we recall that y3 = y~f(T) and that our methodology forces y2~4(T) to
belong to H},, explaining the observed behaviour of the above function
in the neighbourhood of I'. On Figures 4 and 5 we have represented the
functions ¢ — [[u(t)||2(ry (.-.) and t — [lu*(t)|lg2ry (—) for t € (0,T) and
h = At = 1/32, h = At = 1/64, respectively. Finally, on Figures 6 and 7
we have compared f(z1,0.5) (...) and f*(z1,0.5) (—) for z; € (0,1) and
h = At =1/32, h = At = 1/64, respectively. Comparing these two figures
shows that h = At = 1/32 provides a (slightly) better approximation than
h = At = 1/64; this is in agreement with the results in Table 1.

The results obtained here compared favourably with those in Carthel et al.
(1994) where the same test problem was solved by other methods, including
a second-order accurate time discretization method close to that discussed
in Section 1.8.6 for distributed control problems (see also Carthel (1994) for
further results and comments).

2.6.2. Second test problem

If one uses the notation of Section 2.6.1 we have for this test problem 2 =
(0,1)x(0,1), T=1, s=0, yo =0, yr(x1,z2) = min(z1,z2,1 — 1,1 — x2)
and v = 1/27?; unlike the test problem of Section 2.6.1, for which I'y =T,
we have here Ty # T since

FO:{{$1)$2}]0<$1 <1, 1’2:0}

The function yr is Lipschitz continuous, but not smooth enough to have (see
the discussion in Carthel et al. (1994, Section 2.3.3)) exact controllability.
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of 0.25 0.5 0.75 1
*,
Fig. 2. Comparison between yr (...) and yy (—) (h = At = 1/32).
17.5¢
15}
12.5}
10}
7.5
5
2.5
0 0.25 0.5 0.75 1
x,

Fig. 3. Comparison between yr (...) and y} (—) (h = At = 1/64).

This implies that problem (2.21) has no solution if ¥ = +o00; on the other
hand, problems (2.11), (2.12), (2.21), (2.25) are well-posed for any finite
positive value of k or 8. Focusing on the solution of problem (2.21) we have
used the same space and time discretization methods as for the first test
problem, with h = At = 1/32 and h = At = 1/64. We have taken k = 10°
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12} L

10}

Iell o

0.25 0.5 0.75 1

t
Fig. 4. Comparison between |ju(t)||z2(ry (...) and |Ju*(t)||z2qr) (—) (h = At =
1/32).

12}

10}

lell o

0.25 0.5 0.75 1

t

Fig. 5. Comparison between ||u(t)|z2(ry (...) and [[u*(t)|[L2ry (—) (h = At =
1/64).

and 107 for the penalty parameter and used ¢ = 103 for the stopping
criterium of the conjugate gradient algorithm (2.125)—(2.151) (which has
been initialized with f° = 0).

The numerical results have been summarized in Table 2.
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2.5
2t
£ 1.5
'
0.5}

0 . . N

0.25 0.5 0.75 1
X
1

Fig. 6. Comparison between f (...) and f* (—) (h = At = 1/32).

2.5 o
N
f 1.5
11
0.5}
0 0.25 0.5 0.75 1
x,

Fig. 7. Comparison between f (...) and f* (—) (h = At = 1/64).

The above results suggest the following comments: first, we observe that
lyr — y£t(T)| -1 varies like k~1/4, approximately. Second, we observe that
the number of iterations necessary for convergence, increases as h, At and
k~! decrease; there is no mystery here, since — from Section 1.8.2, relation
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Table 2. Summary of numerical results.

h = At 1/32 1/64 1/32 1/64

k 105 10° 107 107

Number of

iterations 56 60 292 505

”yT”—_ﬁT”—‘l 131 x 107! 1.28x 10! 4.15x 10~2 3.93 x 10~2
Yril—1

[ L2 (s0) 8.18 8.12 25.59 24.78

17N 2 o) 600.4 584.2 18,960 17,950

1N 22 75.95 73.63 1,632 1,525

(1.130) — the key factor controlling the speed of convergence is the condition
number of the bilinear form in the left-hand side of equation (2.124). This
condition number, denoted by v5t(k), is defined by

At .
k) = R Ry(2), 2.161
vi (k) = max, w2) [ Jpin n(2) (2.161)

where, in (2.161), Rp(z) is the Rayleigh quotient defined by

kT o[ V2]? da:+fQ(Aﬁtz)zdx_
- o Ve do ’

Ry (2) (2.162)

it can be shown that

Lim vt (k) = Kl Al g o2 @) (2.163)

implying that for small values of h, At and k!, problem (2.124) is badly
conditioned. Indeed, we can expect from (2.163) and from Section 1.8.2, re-
lation (1.130), that for h and At sufficiently small the number of iterations
necessary to obtain convergence will vary like k'/2, approximately; this pre-
diction is confirmed by the results in Table 2 (and will be further confirmed
by the results in Section 2.6.3, Table 3, concerning our third test problem).
Third, and finally, we observe that ||u*||.2(x,) (respectively || f*|| Hi(Q)) varies

like k174 (respectively k3/4); it can be shown that the behaviour of || f*|| HAQ)
follows from that of ||yr —y7| -1 since we have (see, e.g., Carthel et al. (1994,
Remark 4.3))
gl = “ﬁf;y(l)“;l (2.164)
Il a2 @)

where y is the state function obtained from the optimal control u via (2.1)-
(2.3).
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Fig. 8. Graph of the target function yr (yr(z1,z2) = min(zy, 22,1 — 21,1 —
1‘2),0 S T1,X S 1)

On the following figures, we have represented or shown the following in-
formation and results.

A view of the target function yp on Figure 8. On Figures 9(a) to 12(a)
(respectively 9(b) to 12(b)) the graph of the function (= y2~t(T)) (respec-
tively a comparison between yr (...) and the actually reached state function
yy (—)) for various values of h, At and k (we have shown the graphs of the
functions z2 — yr(0.5,z2) and o — y5(0.5, x2) for zo € (0,1)). The graphs
of the computed solution f£*(= f*) and of the function z2 — f2t(0.5,z2)
on Figures 13 to 16. On Figures 17 to 20 the graphs of the functions
t = Jlu*(®)llL2ry) and {z1,t} — u*(z1,t). Finally, we have visualized on
Figures 21 to 24 (using a log-scale) the convergence to zero of the conjugate
gradient residual || g || H)(n); the observed behaviour (highly oscillatory, par-

ticularly for k = 107) is typical of a badly conditioned problem.

2.6.3. Third test problem

For this test problem €2, T, Iy, yo, s, A, v are as in Section 2.6.2, namely
N=01)x(01), T=19p%=0 s=0, A= —vA withv = 1/27r2; the
only difference is that this time yr is the discontinuous function defined by

1 if 1/4 < x4, < 3/4,
yr(z1, z2) Z{ if 1/4 <a1,25 <3/

0 otherwise.
We have applied to this problem the solution methods considered in Section
2.6.2; their behaviour here is essentially the same as that for the test problem
of Section 2.6.2 (where yr was Lipschitz continuous). We have shown in the

(2.165)
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Table 3. Summary of numerical results.

h = At 1/32 1/64 1/32 1/64

k 10° 10° 107 107

Number of

iterations 55 56 361 569

'—'Z’Tl—ly_% 1.64 x 10~ 1.57x 10! 1.05x 10~1 9.88 x 102
Ti—1

[u* L2 (s0) 14.68 15.07 56.80 58.53

£l 20 1,407 1,410 90,010 88,510

1712 120.7 122.5 5,608 5,566

following Table 3 the results of our numerical experiments (the notation is
as in Section 2.6.2).

Comparing to Table 2 we observe that the convergence properties of
the conjugate gradient algorithm are essentially the same, despite the fact
that yr is much less smooth here; on the other hand we observe that
lyr — y~t(T)||-1 varies like k~1/3, approximately, implying in turn (from
(2.164)) that || f*|| Hi(q) varies like k7/8, approximately. The dependence of

llu* |l L2(s0) is less clear (to us at least); it looks ‘faster’, however, than Kl/4,

On Figure 25 we have visualized the graph of the target function yr, then
on Figures 26 and 27 we have compared the function zo — yr(0.5,z2) to
z9 — y7(0.5,22) (—) for various values of k, h and At; on Figures 28 and
29 we have shown the graphs of the corresponding function y7. Finally,
for the above values of k, h and Atf, we have shown, on Figures 30 to
35, further information concerning uff, f™t and the convergence of the
conjugate gradient algorithm (2.125)-(2.151).

2.7. Neumann control (I): Formulation of the control
problems

We consider again the state equation (2.1) in @ and the initial condition

(2.3). We suppose this time that the boundary control is of the Neumann’s

type. To be more precise, the state function y is defined now by

9y . 9y 9y

—+Ay=0 0)=0, — = Yo, m—
In (2.166), 3/0na denotes the conormal derivative operator; if operator

A is defined by

=0on Z\Xy. (2.166)

d
_ 9 v
Ap = — Z > 32, 9z (2.167)
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Xz

Fig. 9. (a) Graph of the function y4(k = 10°, h = At = 1/32). (b) Comparison
between yr (...) and ¥ (—) (k= 10%, h = At =1/32).



190 R. GLOWINSKI AND J.L. LIONS
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X2

Fig. 10. (a) Graph of the function y3(k = 103, h = At = 1/64). (b) Comparison
between yr (...) and ¥4 (—) (k= 10°, h = At = 1/64).
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Fig. 11. (a) Graph of the function y.(k = 107, h = At = 1/32). (b) Comparison
between yr (...) and g} (—) (k =107, h = At = 1/32).
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0.25 0.5 0.75 1

X2

Fig. 12. (a) Graph of the function y4(k = 107, h = At = 1/64). (b) Comparison
between yr (...) and y5 (—) (k =107, h = At = 1/64).
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Fig. 13. (a) Graph of the function f2*(k = 10%, h = At = 1/32). (b) Graph of
the function z — f2%(0.5,z2)(k = 10%, h = At = 1/32).
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Fig. 14. (a) Graph of the function f2*(k = 105, h = At = 1/64). (b) Graph of
the function zo — f24(0.5,z2)(k = 10°, h = At = 1/64).
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Fig. 15. (a) Graph of the function fP!(k = 107, h = At = 1/32). (b) Graph of
the function zo — f24(0.5,22)(k = 107, h = At =1/32).
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Fig. 16. (a) Graph of the function f2t(k = 107, h = At = 1/64). (b) Graph of
the function zo — fA4(0.5,22)(k = 107, h = At = 1/64).
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0.25 0.5 0.75 1

i o 0
Fig. 17. (a) Graph of t — ||u*(t)||2(ro)(k = 10°, h = At =1/32). (b) Graph of
the computed boundary control (k = 10°, h = At = 1/32).
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Fig. 18. (a) Graph of t — |[u*(t)||L2(ro)(k = 10°, h = At = 1/64). (b) Graph of
the computed boundary control (k = 10°, h = At = 1/64).
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Fig. 19. (a) Graph of t — ||u*(t)||2(ry)(k = 107, h = At =1/32). (b) Graph of
the computed boundary control (k = 107, h = At = 1/32).



200 R. GLOWINSKI AND J.L. LIONS

60

50 [

40h

20

10

Fig. 20. (a) Graph of ¢t — |[u*(t)||L2(r,)(k = 107, h = At = 1/64). (b) Graph of
the computed boundary control (k = 107, h = At = 1/64).
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202

R. GLOWINSK! AND J.L. LIONS

b
1 -
E
—O
o ]
= ol
:
o ]
0.01
0.001}
Q 50 100 150 200 250

k
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Fig. 25. Graph of the target function yr (yr is the characteristic function of the
square (1/4,3/4)%).

then 8/0n 4 is defined by

8nA Z Z aij a (2.168)

i=1j=1

where n = {n;}2_; is the unit vector of the outward normal at T
We assume that

v € L3(Z). (2.169)

There are slight (and subtle) technical differences between Neumann and
Dirichlet boundary controls. Indeed, suppose that operator A is defined by
(2.167) with the following additional properties

aij € L®(Q), V1 <i,j < d, (2.170)

d d
ZZG x)€€; > al€)?, VE € R%, ae. inQ, witha >0 (2.171)
i=1j=1

(in (2.171), |€2 = T4, |&[%, V€ = {&}L, € RY); then problem (2.166) can
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Fig. 26. Comparison between yr (...) and y% (—) (k = 10%, h = At = 1/64).

be expressed in variational form as follows

{ (%,y) +a(y, §) :/F vgdl, v§ € HY(Q), (2.172)
y(t) € HY() a.e. on (%),T), y(0) =0,

where
By (9y
o) =33 [ oo (2173)
p e oz, 83:1

(actually, all this applies to the case where the coefficients a;; depend on z
and t and verify a;;(z,t) € L*°(Q) and

d d
ZZaij(w,t)ﬁifj > 0l€?, V€ €RY, ae. in Q
i=1j=1

with a > 0). Therefore, without any further hypothesis on the coefficients
a;j, problem (2.166) admits a unique solution y(v) = y(z, t; v) such that

y(v) € L*(0,T; HY(2)) N C°([0, T); LA()). (2.174)

To obtain the approzimate controllability property we shall assume further
reqularity properties for the a;;’s, more specifically we shall assume that

aij € CY(Q), V1 <4,5 < d. (2.175)
We have then the following



EXACT AND APPROXIMATE CONTROLLABILITY 205

o
[o ]
e e e e—wy

e st

1
'
'
!
)
'
J

NTAWAN .
V VO.ZS 0.5 0.

X2

~1
wm
=

Fig. 27. Comparison between yr (...) and ¥} (—) (k =107, h = At = 1/64).
Proposition 2.3 Suppose that coefficients a;; verify (2.171) and (2.175).
Then y(T;v) spans a dense subset of L2(Q) when v spans L*(Zo).

Proof. The proof is similar to the proof of Proposition 2.1 (see Section 2.1).
Let us assume therefore that f € L?() satisfies

/ y(T;v)fdz =0, Yu € L*(Zo). (2.176)
Q
We introduce ¥ as the solution of
oY . oy
- * — = _— Z' .

5 +A*Y=0inQ, ¥(T)=7F, B 0 on X; (2.177)

then (2.176) is equivalent to
¥ =0 on . (2.178)

Thanks to the regularity hypothesis (2.175) we can use the Mizohata’s
uniqueness theorem (Mizohata, 1958) (see also Saut and Schoerer (1987)):
it follows then from (2.177) and (2.178) that ¥ = 0, hence f = 0 and the
proof is completed.

Remark 2.8 The applicability of the Mizohata uniqueness theorem under
the only assumption that a;; € L*(Q) does not seem to have been com-
pletely settled, yet.

We can state two basic controllability problems both closely related to
problems (2.11) and (2.12) in Section 2.1.
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Fig. 28. Graph of the function y}(k = 10°, h = At = 1/64).

The first Neumann control problem that we consider is defined by

! 2
1rv1f§ Eov dx, (2.179)

where v is subjected to
y(T;v) € yr + BB; (2.180)

in (2.180), y(¢;v) is the solution of problem (2.166), the target function yr
belongs to L?(Q), B denotes the closed unit ball of L?(£2) and 8 is a positive
number, arbitrarily small.

The second Neumann control problem to be considered is defined by

|1 2 1 . 2
inf [~2— /}:ov d¥ + —éklly(T,v) —yrlize)| (2.181)

where k is a positive number, arbitrarily large.

Both problems (2.179) and (2.181) admit a unigue solution. There is
however a technical difference between these two problems since problem
(2.181) admits a unique solution under the only hypothesis a;; € L>(Q)
(and of course the ellipticity property (2.171)), while the existence of a
solution for problem (2.179), with 3 arbitrarily small, requires, so far, some
regularity property (such as (2.175)) for the a;;’s. In the following we shall
assume that property (2.175) holds, even if this hypothesis is not always
necessary.
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Fig. 29. Graph of the function y}(k = 107, h = At = 1/64).

2.8. Neumann control (II): Optimality conditions and dual
formulations

The optimality system for problem (2.181) is obtained by arguments which
are fairly classical (see, e.g., Lions (1968)), as recalled in Section 2.2. Follow-
ing, precisely, the approach taken in Section 2.2, we introduce the functional
Ji : L*(Z) — R defined by

1 1
Tuw) =5 [ oPdS+ Skly(Tiv) — vrl. (2.182)
4]
We can show that the derivative Jj, of Ji is defined by
(i), w)agsgy = [ 0+ PwdE, Vo, e LX(Eo), (2.183)
3o

where, in (2.183), the adjoint state function p is obtained from v via the
solution of (2.166) and of the adjoint state equation

Op .o Op
—EZ—FAp—OmQ, e

Suppose now that u is the solution of the control problem (2.181); since
Ji.(u) = 0, we have then the following optimality system satisfied by u and
by the corresponding state and adjoint state functions:

U= —p|sy, (2.185)

=0on X, p(T) =k(y(T) —yr). (2.184)
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Fig. 30. (a) Graph of fft(k = 10%, h = At = 1/64). (b) Graph of 2o —
A(0.5,z2)(k = 10°, h = At =1/64).
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Fig. 31. (a) Graph of fPt(k = 107, h = At = 1/64). (b) Graph of z2 —
A0.5,22)(k = 107, h = At = 1/64).



210 R. GLOWINSKI AND J.L. LIONS

25T

Fig. 32. (a) Graph of ¢t — |[u*(t)||r2(r,)(k = 10°, h = At = 1/64). (b) Graph of
the computed boundary control (k = 105, h = At = 1/64).
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Fig. 33. (a) Graph of t — ||u*(t)||L2(rg)(k = 107, h = At =1/64). (b) Graph of
the computed boundary control (k = 107, h = At = 1/64).
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dy P _ Oy _ dy _
Bt +Ay=0in Q, y(0)=0, g 0 on ¥\, Bng p on Xg,
(2.186)
0 : Op
- =+A=0inQ, ——=0o0nZ p(T)=k(y(T)—yr). (2.187)
at 8nA*

In order to identify the dual problem of (2.181) we proceed essentially as
in Section 2.2. We introduce therefore the operator A € L(L?(f2); L2(2))
defined by

Af=—¢(T), ¥f € L}(Q), (2.188)
where, in (2.188), ¢ is obtained from f as follows.
Solve first
0 r oY P
E+A ¥ =0in Q, g =0on X, ¥(T) = f, (2.189)
and then
op . . NN o -
5 +Ap=0in Q, ¢@(0) =0, Bna 0 on X\, s ¥ on Y.
(2.190)

We can easily show that (with obvious notation)

[Apde= [ punds Vi e 2@, (2190
Q o

It follows from (2.191) that operator A is symmetric and positive semi-
definite; indeed, it follows from the Mizohata’s uniqueness theorem that
operator A is positive definite (if (2.175) holds, at least). However, operator
A is not an isomorphism from L?(€2) onto L?(2) (implying that, in general,
we do not have here exact boundary controllability).

Back to (2.188), we observe that, if we denote by f the function p(T’) in
(2.187), it follows from the definition of operator A that we have

k7 f + Af = —yr. (2.192)

Problem (2.192) is the dual problem of (2.181). From the properties of the
operator k~1I + A, problem (2.192) can be solved by a conjugate gradient
algorithm operating in the space L2(Q2); we shall return to this issue in
Section 2.9.

The dual problem (2.192) has been obtained by a fairly simple method.
Obtaining the dual problem of (2.179) is more complicated. We can use
— as already done in previous sections — the Fenchel-Rockafellar duality
theory; however, in order to introduce (possibly) our readers to other duality
techniques we shall derive the dual problem of (2.179) through a Lagrangian
approach (which is indeed closely related to the Fenchel-Rockafellar method,
as shown in, e.g., Rockafellar (1970) and Ekeland and Temam (1974)).
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Our starting point is to observe that problem (2.179) is equivalent to

inf * / w243, (2.193)
{vvz} z:0
where, in (2.193), the pair {v, z} satisfies
v € L3(%y), (2.194)
z €yr + BB, (2.195)
y(T)—2z=0, (2.196)

y(T') being obtained from v via the solution of (2.166). The idea here is to
‘dualize’ the linear constraint (2.196) via an appropriate Lagrangian func-
tional and then to compute the corresponding dual functional. A Lagrangian
functional naturally associated with problem (2.193)-(2.196) is defined by

L, zp) =+ [ w2ds+ / u(y(T) = 7) da. (2.197)
2 Js, Q
The dual problem associated with (2.193)—(2.197) is defined by
Jnf J*(w), (2.198)
where, in (2.198), the dual functional J* is defined by
J(p) = — {ivnzf} L(v,z; 1), (2.199)

where {v, z} still satisfies (2.194), (2.195). We clearly have

inf L(v,z;u) = inf [1/ Uzd2+/y(T)udx] — sup /uzdx,
2 Jx, Q Q

{v,2} veL2(To) z€yr+BB

(2.200)
and then
sup /,uzdw = sup [/ u(z—yT)da:—f—/,udemJ
z€yr+BB /Q 2€yr+pB L/ Q2
= Blulzae + [ pyr do. (2.201)
It remains to evaluate
1

inf —/ v2d2+/ T d:c]; 2.202
vEL?(Lo) [2 %o Qy( n ( )

indeed, solving the (linear) control problem (2.202) is quite easy since its
unique solution u, is characterized (see, e.g., Lions (1968)) by the existence
of {yu,pu} such that

Uy = —Dulso, ’ (2.203)
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o 0
£+ Ay,=0in @, w.(00=0 —yi=—puon20, éy——OonE\Eo,

at " Ong
(2.204)
ap“+A*p =0in Q 8L_00n2 pu(T) = p. (2.205)
ot # T Ongs i

We have then from (2.202)—(2.205) and from the definition and properties
of the operator A

1 1
'f—2d2/Td]=—/2d2/Td
et [2/2011 + Qy( Judz 3 Js, P + Qyﬂ( Judx
1
= 3 (A,u)ud:z: (2.206)

Combining (2.199), (2.200), (2.201) to (2.206) implies that

. 1
7w =3 [ (e + Bl + [ vrude. (2.207)
The dual problem to (2.179) is defined then by
inf [— / (AS)f dz + B fll L2 +/ yrf dm] , (2.208)
ferz(a) L2

or, equivalently, by the following variational inequality
f e L*(9),
[ A9 = Dz + Bl e — Bl iz 2.309)
+/chr(f~ f)dz >0, Vf € L*(Q).

Once f is known, obtaining the solution u of problem (2.179) is quite easy,
since

u = —pls,, (2.210)
where, in (2.210), p is the solution of

_Op
ot

The numerical solution of problem (2.208), (2.209) will be discussed in Sec-
tion 2.10.

+A'p=Q, aii* =0on %, p(T) = f. (2.211)

Remark 2.9 Proving directly the existence and uniqueness of the solution f
of problem (2.208), (2.209) is not obvious. Actually, proving it without some
regularity hypothesis on the a;;’s (like (2.175)) is still an open question.
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2.9. Neumann control (III): Conjugate gradient solution of
the dual problem (2.192)

We shall address in this section the iterative solution of the control problem
(2.181), via the solution of its dual problem (2.192). From the properties
of A (symmetry and positive definiteness) problem (2.192) can be solved
by a conjugate gradient algorithm operating in the space L?(£2). Such an
algorithm is given below; we will use there a variational description in order
to facilitate finite element implementations of the algorithm.

Description of the algorithm

fO is given in L%(Q); (2.212)
solve
‘po ¥ ()2dz +al= 9(1)) = 0, ¥z € HY(9),
Zdr T alz =% Ve (2.213);
d}o(t) € Hl(Q), a.e. on (0,7,
YT = f°, (2.213),
and then
o 0
/Q a—";(t)z dz + a(L°(t), 2) = — /F 0 YO(t)zdT", Vz € HY(), (2.214),
©O(t) € HY(R), a.e.on (0,T),
©%(0) = 0. (2.214),

Solve next

€ L2(Q),
{ /govdx::k‘I/ fovdx+/(yT—<p0(T))vdm, Vv € L3(Q),
Q Q Q

(2.215)
and set
w? = ¢°. (2.216)
Then, for n > 0, assuming that f*, g", w" are known, compute fm*1,
g™, wtl as follows.
Solve

/ 5 (t )zdx + a(z,9"(t)) = 0, Yz € H(Q),
Y™ (t) € HY(Q), a.e.on (0,T)

(2.217),

Y™(T) = w", (2.217)2
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and then
op" -
t)zdz + a(@p"(t),2) = — "(t)zdl', Vz € HY(Q),
f o 2o +a@®,2) = - [ §r0zdr e H@), o
¢"(t) € HY(Q), ae. on (0,T)
&"(0) = 0. (2.218),
Solve next
g" € LX),
(2.219)
/g%d::::k‘l/ w"vdm—/ " (T)vdz, Yo € L3(Q),
Q Q Q
and compute
Pn :/ Fidk dm// g w™ dx. (2.220)
Q Q
Set then
= = pw®, (2.221)
9" =g" — pnd™. (2.222)
If g™ M L2 /g2 ) < € take f = fm1; else, compute
T =/ lg"“lzdx// 9" dx (2.223)
Q Q
and update w™*! via
w™th = g™ 4y (2.224)

Don=n+1 and go to (2.217).

In (2.212)-(2.224), the bilinear form a(-,-) is defined by (2.173).

It is fairly easy to derive a fully discrete analogue of algorithm (2.212)-
(2.224), obtained by combining finite elements for the space discretization
and finite differences for the time discretization. We shall then obtain a
variation of algorithm (2.125)—(2.151) (see Section 2.5), which is itself the
fully discrete analogue of algorithm (2.42)—(2.54) (see Section 2.3). Actually,
algorithm (2.212)—(2.224) is easier to implement than (2.42)-(2.54) since it
operates in L?(Q), instead of H}(2); no preconditioning is required, thus.

2.10. Neumann control (IV): Iterative solution of the dual
problem (2.208), (2.209)

Problem (2.208), (2.209) can also be formulated as
—yr € Af + BAj(f), (2.225)
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which is a multivalued equation in L2(Q). In (2.225), 8j(-) is the subgradient
of the convex functional j(-) defined by

=/ |f|2da:)1/2, vf € 1.

As done in preceding sections we associate with the elliptic equation (2.225)
the initial value problem

of ;
{ 5.+ AS +B05(f) = ~ur, (2.226)
f(0) = fo.

To obtain the steady state solution of (2.226), i.e. the solution of (2.225),
we shall use the following algorithm obtained, from (2.226), by application
of the Peaceman—Rachford time discretization scheme (where Ar(> 0) is a
pseudo-time discretization step)

£ = fo; (2.227)
then, for n > 0, compute f**V/2 and f**1, from f*, via
fn+1/2 — fn n s en4+1/2y
AT + Af™ + BO(f ) = —yr, (2.228)
n+l _ fn+1/2
rrerts + AfTT 4 8O () = —yr. (2.229)

AT/2
Problem (2.229) can be reformulated as
fn+1 _ 2fn+1/2 + fn

AT/2
problem (2.230) being a simple variation of problem (2.192) can be solved by
an algorithm similar to (2.212)—(2.224). On the other hand, problem (2.228)

can be (easily) solved by the methods used in Section 1.8.8 to solve problems
(1.240), (1.243), (1.245) which are simple variants of problems (2.228).

+ A= A (2.230)

3. CONTROL OF THE STOKES SYSTEM

3.1. Generalities. Synopsis

The control problems and methods which were discussed in Section 2 were
mostly concerned with systems governed by linear diffusion equations of
the parabolic type, associated with second-order elliptic operators. Indeed,
these methods have been applied, in, e.g., Berggren (1992) and Berggren
and Glowinski (1994), to the solution of approzimate boundary controllabil-
ity problems for systems governed by strongly advection dominated linear
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advection—diffusion equations. These methods can also be applied to sys-
tems of linear advection—diffusion equations and to higher-order parabolic
equations (or systems of such equations). Motivated by the solution of
controllability problems for the Navier-Stokes equations modelling incom-
pressible viscous flow, we will now discuss controllability issues for a system
of partial differential equations which is not of the Cauchy—Kowalewski type,
namely the classical Stokes system.

3.2. Formulation of the Stokes system. A fundamental
controllability result

In the following, we equip the Euclidian space R%(d > 2) with its classical
scalar product and with the corresponding norm, i.e.

d
a-b= Zaibi, Va = {a;}%,, b={b}, eR? |a| = (a- a)l/2, va e RY.
i=1
We suppose from now on that the control v is distributed over €2, with its
support in O C Q (as in Sections 1.1 to 1.8, whose notation is kept). The
state equation is given by

(&, 2 Trme o
subjected to the following initial and boundary conditions
y(0)=0, y=0onZX. (3.2)
In (3.1) we shall assume that
v €V = closed subpsace of L2(O x (0,T))%. (3.3)
To fix ideas we shall take d = 3, and consider the following cases for V:
V= L0 x (0,T))3, (3.4)
V = {v1,v2,0}, {v1,v2} € L*(O x (0,T))?, (3.5)
V= {v,0,0}, v € L3O x (0,T)). (3.6)

Problem (3.1), (3.2) has a unique solution, such that (in particular)
{ y(tv) € L0, T; (H3 ()*), V -y =0,

a_y . 2 1!
at (t’v) e L (0?T7V)7

where V' is the dual space of V with
V={plee(H()?V =0} (3.8)

(3.7)
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It follows from (3.7) that
t — y(t; v) belongs to C°([0, T); H), (3.9)
where
H = closure of V in (L?(Q))3
={plee(L?(Q))3 V-¢=0,¢-n=00nT}  (3.10)

(where n denotes the outward unit normal vector at I').
We are now going to prove the following

Proposition 3.1 If V is defined by either (3.4) or (3.5), then the space
spanned by y(T;v) is dense in H.

Proof. It suffices to prove the above results for the case (3.5). Let us therefore
consider f € H such that

/y(T;v)~fdx:O, Vv e V. (3.11)
Q
To f we associate the solution 1 of the following backward Stokes problem
oY
Y A= — i
Bt Y Vo in Q, (3.12)
V-¢¥=0inQ,
P(T)=f, p=0o0n . (3.13)

Multiplying by y = y(v) the first equation in (3.12) and integrating by parts
we find that

// b-vdedt =0, Vv e V. (3.14)
Ox(0,T)

Therefore
Y1 =12 =0in O x (0,T). (3.15)

But % is (among other things) continuous in t and real analytic in z in
Q x (0,T), so that (3.15) implies that

Y1 =1%2=01in Q x (0,T). (3.16)

Since V - ¢ = 0, it follows from (3.16) that 93/0z3 =0 in Q x (0,T), and
since i3 = 0 on X, then 13 = 0in Q x (0, T'), so that f = 0, which completes
the proof. O

Remark 3.1 The above density result does not always hold if V is defined
by (3.6), as proven by I. Diaz and Fursikov (1994).

Remark 3.2 Proposition 3.1 was proved in the lectures of the second author
at Collége de France in 1990/91. Other results along these lines are due to
Fursikov (1992).
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The density result in Proposition 3.1 implies (at least) approzimate con-
trollability. Thus, we shall formulate and discuss, in the following sections,
two approximate controllability problems.

3.3. Two approximate controllability problems
The first problem is defined by

min l// |v|? dz dt, (3.17)
vels 2 J Jox(0,T)

where
Up = {v|v eV {v,y} verifies (3.1),(3.2) and y(T) € yr + 8Bg}; (3.18)

in (3.18), yr is given in H, 3 is an arbitrary small positive number, By is
the closed unit ball of H and - to fix ideas — V is defined by (3.5).

The second problem is obtained by penalization of the final condition
y(T) = yr; we have then

1 ) 1 R
min [2 /L. o A 5k [ 1y@ =yl dx], (3.19)

where, in (3.19), k is an arbitrary large positive number, y is obtained from
v via (3.1), (3.2) and V is as above.

It follows from Proposition 3.1 that both control problems (3.17) and
(3.19) have a unique solution.

3.4. Optimality conditions and dual problems

We start with problem (3.19), since it is simpler than problem (3.17). If we
denote by Ji the cost functional in (3.19), we have

lim JEVHOW) = Je(V) )y = // (v—p)-wdzdt, (3.20)
%;8 0 0x(0,T)

where, in (3.20), the adjoint velocity field p is solution of the following
backward Stokes problem

Jp .
V-p=0inQ,
p=0on X, p(T)=k(yr — y(T))- (3.22)

Suppose now that u is the unique solution of problem (3.19); it is charac-
terized by

{ uev, (3.23)

(Ji(u),w) =0, Vw €V,
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which implies in turn that the optimal triple {u,y,p} is characterized by

u1 = p1lo, u2 = p2lo, uz =0, (3.24)
dy .
T Ay + V7 = uxp in Q, (3.25)
V-y=0inQ,
y(0)=0, y=0o0n %, (3.26)

to be completed by (3.21), (3.22).
To obtain the dual problem of (3.19) from the above optimality conditions

we proceed as in the preceding sections by introducing an operator A €
L(H; H) defined as follows:

Af = (T, vf € H, (3.27)
where to obtain ¢(7T') we solve first
9 R
{ __’I’_A¢+va=01n Q, (3.28)
V. ’¢ =01in Q,
P(T)=f, p=0o0on%, (3.29)
and then
9 _Ap+ Vi 0
5 ~ AP+ Vi = {t1,2,0}x0 in Q, (3.30)
V. ‘P =0in Qa
@(0)=0, p=00n X (3.31)

(the two above Stokes problems are well-posed).
Integrating by parts in time and using Green’s formula we can show that
(with obvious notation) we have

/ (AF) - f’dm-//@x (D, + dodit) dzdt, VF, f € H  (3.32)

It follows from relation (3.32) that the operator A is symmetric and positive
semi-definite over H; indeed using the approach taken in Section 3.2 to
prove Proposition 3.1, we can show that A is positive definite over H.

Back to the optimality conditions, let us denote by f the function p(T');
it follows then from (3.22) and from the definition of A that f satisfies

k7 + Af = yp (3.33)

which is precisely the dual problem of (3.19).
From the symmetry of A, problem (3.33) can be solved by a conjugate
gradient algorithm operating in the space H.
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Consider control problem (3.17); applying the Fenchel-Rockafellar duality
theory it can be shown that the unique solution u of problem (3.17) can be
obtained via

u; = p1xo, U2 = p2Xxo, u3 =0, (3.34)
where, in (3.34), p is the solution of the backward Stokes problem
op .
V.-p=0inQ,
p(T)=f, p=0on %, (3.36)

where, in (3.36), f is the solution of the following variational inequality
fe H vf e H, we have
[ a9)- (= £)do+ 81l — Ul > [ yr-(E-f)do

where ] = (f,|£1? dz) /2
Problem (3.37) can be viewed as the dual of problem (3.17).

(3.37)

3.5. Iterative solution of the control problem

The various primal or dual control problems considered in Sections 3.3 and
3.4 can be solved by variants of the algorithms which have been used to solve
their scalar diffusion analogues; these algorithms have been described in
Section 1.8. Here we shall focus on the direct solution of the control problem
(3.19), by a conjugate gradient algorithm, since we used this approach to
solve the test problem discussed in Section 3.7. The unique solution u of the
control problem (3.19) is characterized as also being the unique solution of
the linear variational problem (3.23). From the properties of the functional
Jk, this problem is a particular case of problem (1.121) in Section 1.8.2;
applying thus algorithm (1.122)—(1.129) to problem (3.23) we obtain:

u® chosen in V; (3.38)
solve
dy"° ;
% — Ay’ + V7% = u’x0 in Q, (3.39)
V . yO e 0 in Q,
yO(O) —0,y"=0o0n3, (3.40)
and then

—6—p(i—A 04+ Vel=0inQ
ot P = ’ (3.41)

V- p’=0in Q,
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p’ =0 on %, p’(T) = k(yr — y°(T)). (3.42)

Solve now

gleV,
// go-vdxdtzf/ (u® —p%) -vdzdt, Vv e, (3-43)
Ox(0,T) ox(0,T)

and set
wl = g0 (3.44)

Then for n > 0, assuming that u™, g*, w" are known, we obtain u™*!,

g"tl wtl as follows.

Solve
e £
Y AT T (U
% Ay" 4+ V" =w"xo in Q, (3.45)
V. -y"=0in Q,
¥y*(0)=0, y"=0on X, (3.46)
and then
_81‘)” —Ap"+Vs"=0in Q
ot ’ (3.47)
V- -p"=0in Q,
p"=0o0n X, p™(T)=—-ky™(T). (3.48)
Solve now

ney,
// g"~vdxdt=// (@ —p") - vdzdt, Wwey, (49
Ox(0,T) Ox(0,T)

and compute

pn=// [g"|2dxdt/// g" . whdzdt, (3.50)
0x(0,T) Ox(0,T)

u"tl =u" — p,w", (3.51)
g™t =g" — png". (3.52)

If g™ Ml L2 (ox 0,y)2/ 18° 1l L2(ox (0,12 < € take u = u™*t

%zf/ |g”+1|2dxdt/// g Pdedt  (3.53)
Ox(0,T) Ox(0.T)

and update W™ by

; else, compute

n+1 n+1

Wi =g W (3.54)

Don=mn+1 and go to (3.45).
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Remark 3.3 For a given value of ¢ the number of iterations necessary to
obtain the convergence of algorithm (3.38)—(3.54) varies like k!/2 (as before
for closely related algorithms).

Remark 3.4 The implementation of algorithm (3.38)—(3.54) requires effi-
cient Stokes solvers, for solving problems (3.39) (3.40), (3.41) (3.42), (3.45)
(3.46), (3.47) and (3.48). Such solvers can be found in, e.g., Glowinski and
Le Tallec (1989), Glowinski (1991; 1992a); actually, this issue is fully ad-
dressed in the related article by Berggren and Glowinski (1994), for more
general boundary conditions than Dirichlet.

3.6. Time discretization of the control problem (3.19)

The practical implementation of algorithm (3.38)—(3.54) requires space and
time approximations of the control problem (3.19). Focusing on the time
discretization only (the space discretization will be addressed in Berggren
and Glowinski (1994)) we introduce a time discretization step At = T/N
(with N a positive integer), denote by v the vector {v*}»_; and approximate
problem (3.19) by

At n|2 k N 2
Join, [7;/0 |v™|° dx + 3 /Q ly" —yrl dx} , (3.55)
where, by analogy with (3.4)—(3.6), V2! is defined by either
VA = vl | vt = (of, 0,08} € (LX(O)), ¥ =1,..., N}
or
VAL = (vl | v = (o7, 03,0}, (o], 05, } € (L)%, ¥n = 1,..., N},
VAL = {v"HL, | vt = {o],0,0}, 0} € LX(O), ¥ = 1,... ,N},
and where y” is obtained from v via
y’=0; (3.56)

forn = 1,...,N, we obtain {y™, 7"} from y"~! by solving the following
steady Stokes type problem

yn _ yn—l
T~ AY" VAt = VX0 in @, (3.57)
vV - yn ={01in Q,

y*=0onT. (3.58)

The above scheme is nothing but a backward Euler time discretization of
problem (3.1), (3.2). Efficient algorithms for solving problem (3.57), (3.58)
(and finite element approximations of it) can be found in, e.g., Glowinski and
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Le Tallec (1989), Glowinski (1991; 1992a) (see also Berggren and Glowinski
(1994)).

The discrete control problem (3.55) has a unique solution; for the optimal-
ity conditions and a discrete analogue of the conjugate gradient algorithm
(3.38)—(3.54) see Berggren and Glowinski (1994) (see also the above refer-
ence for a discussion of the full discretization of problem (3.19) and solution
methods for the fully discrete problem).

3.7. Numerical experiments

Following Berggren and Glowinski (1994), we (briefly) consider the practical
solution of the following variant of problem (3.19):

min B / /O om |v\2dmdt+§ /Q \y(T)—yT|2da:}, (3.59)

where, in (3.59), O C Q C R?, v = {v,0}, V = {v | v = {v,0},v1 €
L*(O x (0,T))}, where y(T) is obtained from v via the solution of the
following Stokes problem

Oy _ .
T vAy + V71 =vyxp in Q, (3.60)
V.-y=0inQ,
Y(O) =Yo, with Yo € (LZ(Q))2’ v ‘Yo = Oa Yo-n= 0 on EO(Z 1—‘0 X (O7T)),
(3.61)
y = go on X, (3.62)
VB_y —nr =g; on X1(=T1 x (0,7)), (3.63)

on

and where the target function yr is given in (L2(2))2. In (3.60)-(3.63)
v(> 0) is a viscosity parameter and Iy N T'; = @, closure of Ty UT; = T.
Actually the boundary condition (3.63) is not particularly physical, but
it can be used to implement downstream boundary conditions for flow in
unbounded regions.

The test problem that we consider is the particular problem (3.59) where:

1 Q=(0,2)x(0,1), O=(1/2,3/2) x (1/4,3/4), T =1

2 To={{zi},|z2=0o0rl, 0<z; <2}, Ty ={z}2, | =1 =
Dor2, 0<zy <1}k

3 g0o=0, g1 =0;

4 yr=0, k=20

5 v="5x10"%

6  yo corresponds to a plane Poiseuille flow of maximum velocity equal
to 1, i.e.

yo(z) = {4z2(1 — x2),0}, Vz € Q.
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Fig. 36. Variation of [|y£*(t)||(z2(q))z with (—) and without (...) control.

Integrating equations (3.60)—(3.63) with v = 0 will lead to a solution that
decays in time with a rate determined by the size of the viscosity parameter
v. The problem here is to find — via (3.59) — a control that will speed up
this decay as much as possible at time T

The time discretization has been obtained through a variant of scheme
(3.56)—(3.58), using At = 1/50; the space discretization was achieved using a
finite element approximation associated with a 32 x 16 (respectively (16 x 8))
regular grid for the wvelocity (respectively the pressure) (see Berggren and
Glowinski (1994), for details). A fully discrete variant of the conjugate gra-
dient algorithm (3.38)—(3.54) was used to compute the approzimate optimal
control uft and the associated velocity field y5?.

On Figure 36 we compare the decays between t = 0 and t =T =1 of the
noncontrolled flow velocity (...) and of the controlled flow velocity (—) (we
have shown the values of ([, ly(t)|? dz)'/?; remember that 1 [, |y(t)|? dz is
the flow kinetic energy). On Figure 37, we have compared, at time T, the
kinetic energy distributions of the controlled flow (lower graph) and of the
noncontrolled one (upper graph). Control has been effective to reduce the
flow kinetic energy, particularly on the support O of the optimal control
(according to Figure 37, at least). The results displayed on the following
figures were obtained after 70 iterations.

Finally, we have shown on Figure 38 the graph of the first component of
the computed optimal control uﬁt at various values of ¢.

For further details and comments about these computations see Berggren
and Glowinski (1994), where further numerical experiments are also dis-
cussed.
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Fig. 37. Kinetic energy distribution of the controlled flow (lower graph) and
noncontrolled flow (upper graph). Kinetic energy distribution of the controlled
flow (lower graph) and noncontrolled flow (upper graph).

4. CONTROL OF NONLINEAR DIFFUSION
SYSTEMS

4.1. Generalities. Synopsis

The various controllability problems which have been discussed so far have
all been associated with systems governed by linear diffusion equations.

In this section we briefly address the nonlinear situation and would like
to show that nonlinearity may bring noncontrollability (as seen in Section
4.2) and also to discuss (in Section 4.3) the solution of pointwise control
problems for the wviscous Burgers equation.

Further information is given in V. Komornik (1994), J.L. Lions (1991a),
I. Lasiecka (1992), I. Lasiecka and R. Tataru (1994), E. Zuazua (1988) and
the references therein.

4.2. An example of a noncontrollable nonlinear system

In this section, we want to emphasize that approrimate controllability is very
unstable under ‘small’ nonlinear perturbations.
Let us consider again the state equation

0
8—§ ~Ay=vxoin@, y(0)=0, y=0o0nZX, (4.1)
which is the same equation as in Section 1.1, but where we take A = —A to

make things as simple as possible.
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Fig. 38. (a) Graph of the computed optimal control (t = 0.5). (b) Graph of the
computed optimal control (¢ = 0.84).
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Fig. 38 (cont.) (c) Graph of the computed optimal control (¢ = 0.96). (d) Graph
of the computed optimal control (¢ = 1.0).
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We consider now the nonlinear partial differential equation

gt Ay+ay’=vxpinQ, y(0)=0, y=0o0nx%, (4.2)

where o is positive, otherwise arbitrarily small. Problem (4.2) has a unique
solution (see, e.g., Lions (1969)). Contrary to what happens for (4.1), the set
described by y(T;v) (y(v) is the solution of (4.2)) when v spans L2(Ox(0,T))
is far from being dense in L?(f2).

There are several proofs of this result, some of them based on marimum
principles. The following one is due to A. Bamberger (1977) and is reported
in the PhD thesis of Henry (1978). It is based on a simple energy estimate.
One multiplies (4.2) by my, where m(z) > 0, m = 0 near @, m € C1(Q).
Then

2dt/my dx+/m|Vy[2dw+/yVy dea:-i—a/my dz =0. (4.3)
Let us write
/QyVy -Vmdz = /le/‘ly(ml/ZVy) (m™¥4Vm) d

so that there exists a constant C such that

/yVy-dex Sa/ my4d:1:+/ m\Vyide+C/ m”3|Vm|* dz.
Combining (4.3) and (4.4) gives
dt?/my dx<C/m 3 Wm|*dx
so that
%/Qm(a:)|y(x,T; v)[zdeCT/Qm_BIVm|4dx (4.5)

no matter how v is chosen, since the right-hand side of (4.5) does not depend
on v. Of course, this calculation assumes that we can choose m as above and
such that [, m~3|Vm|*dz < +o0; such functions m are easy to construct.

Remark 4.1 Examples and counter examples of controllability for nonlinear
diffusion type equations are given in Diaz (1991).

4.3. Pointwise control of the viscous Burgers equation

4.3.1. Motivation

The inviscid or viscous Burgers equations have, for many years, attracted
the attention of many investigators, from both the theoretical and numer-
ical points of view. There are several reasons for this ‘popularity’, one of
them being certainly that the Burgers equations provide not too unrealistic
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simplifications of the Fuler and Navier-Stokes equations of Fluid Dynam-
ics; among the features, common with those more complicated equations,
nonlinearity is certainly the most important single one. It is not surprising,
therefore, that the Burgers equations have also attracted the attention of
the Control Community (see, e.g., Burns and Kang (1991), Burns and Mar-
rekchi (1993)). The present section is another contribution in that direction:
we shall address here the solution of controllability problems for the viscous
Burgers equation via pointwise controls; from that point of view this section
can be seen as a generalization of Section 1.10 where we addressed the point-
wise control of linear diffusion systems (the viscous Burgers equation consid-
ered here belongs to the class of the nonlinear advection-diffusion systems
whose most celebrated representative is the Navier—-Stokes equation system).

4.8.2. Formulation of the control problems

As in Berggren and Glowinski (1994) (see also Berggren (1992) and Dean
and Gubernatis (1991)) we can consider the following pointwise control prob-
lem for the viscous Burgers equation

1 1 \
min ‘2‘||V||121 +5kly(T) —yrlize | » (4.6)

where, in (4.6), we have:

1 v={ombly, U= L0, T;RY), vl = (Shic fo loml*dt)V/%;
2 k> 0, arbitrarily large;
3  yr € L?(0,1) and y(T) is obtained from v via the solution of the viscous

Burgers equation, below

OO SN s am) in Q= (0,1) x (0,T)), (4.7
ot "ox2 " Yoz — mzlvm P T

Oy

%(O,t) =0,y(1,t) =0 ae. on (0,T), (4.8)
y(0) = yo(€ L*(0,1)); (4.9)
in (4.7), v(> 0) is a viscosity parameter, f a forcing term, apm € (0,1), Ym =
1,...,M and = — 6(z — a,,) denotes the Dirac measure at a,.
Let us denote by V the (Sobolev) space defined by
V ={z|z€ HY0,1),2(1) = 0}, (4.10)

and suppose that f € L?(0,T;V’) (V': dual space of V); it follows then
from Lions (1969) that for v given in U the Burgers system (4.7)-(4.9) has a
unique solution in L%(0,T;V)NC°([0,T]; L?(0,1)). From this result, we can
show that the control problem (4.6) has a solution (not necessarily unique,
due to the nonconvexity of the functional J : Y — R, where J is the cost
function in (4.6)).
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Remark 4.2 In Glowinski and Berggren (1994), we have discussed the
solution of the variant of problem (4.6) where the location on (0,1) of the
am’s is unknown (am: ‘support’ of the mth pointwise control). The solution
methods described in the following can easily be modified to accommodate
this more complicated situation (see the above reference for details and
numerical results).

4.8.3. Optimality conditions for problem (4.6)

To compute a control u solution of problem (4.6) we shall derive first
necessary optimality conditions and use them (in Section 4.3.4) through a
conjugate gradient algorithm to obtain the above solution.

The derivative J'(v) of J at v can be obtained from

J(v+0w) - J(v)
5 .

! 1
(J'(v), W) = lim
60

(4.11)

Actually, instead of (4.11), we shall use a (formal) perturbation analysis to
obtain J'(v):
First, we have

M T 1
§I(v) = (J'(v), V) = 3 /0 UmSvm dt+k /0 (W(T)—yr)6y(T) dz (4.12)

where (from (4.7)-(4.9)) 6y(T) is obtained from év via the solution of the
following variational problem

oy(t) €V a.e. on (0,T); Vz €V we have a.e. on (0,T)

0 19 _ 0z 1 9y 19

— —by—d Sy== —byzd
<8t6y,z>+y/0 Ep yax x+/0 yaxzda:—i-/o yawéyz T

m
=Y bvmz(am), (4.13)
8y(0) = 0; (4.14)
n (4.13), (-,-) denotes the duality pairing between V' and V.

Consider now p € L2(0,T;V) n C%([0,T); L?(0,1)) such that 8p/dt €
L%(0,T; V'); taking z € p(t) in (4.13) we obtain

9
/0 <at6yp>dt+v/ / 9 sy —d dt
+//(5—+ ia) dz dt
o Jo ya.’t yaxy D

M T
=> / p(am, t)6vr, dt. (4.15)
m=1 0
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Integrating by parts over (0,7T) it follows from (4.14), (4.15) that

1 19 p
/ p(T)6y(T) dz—/ < ,6y> dt +v / / —by dt
0 0 ot
T s
+/ / (6y@+y26y>pdwdt
o Jo ox oz
M T
=> / (@, t) 60y, dt. (4.16)
m=1 0

Suppose now that p satisfies also

Op 1 9p 0z z B
_<E’z>+” 0 8x6zd +/ ( z+y6$> de =0,

Yz eV, ae. on (0,T), (4.17)
and
p(T) = k(yr — y(T)); (4.18)
it follows then from (4.16) that
k / —yr)éy(T Z / p(am, t)6um dt,

which combined with (4.12) implies in turn that
(J(v),6v)y = Z/ Vm(t) = Plam, £))6vm () dt.
We have thus ‘proved’ that, Vv, w e U/
wy = Z / V() = Plams £) ) wm (£) dt. (4.19)

Remark 4.3 Starting from (4.11) we can give a rigorous proof of (4.19).

Suppose now that u is a solution of problem (4.6); we have then J'(u) =0
which provides the following optimality system

um(t) = plam,t), Ym=1,..., M, on (0,7), (4.20)
oy % oy , & .
5 Vanz + Yoo = f+ mgz:l Umb( — am) in Q, (4.21)
9y
P (0,)=0, y(1.H)=00n (0,7), (4.22)

y(0) = o (4.23)
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2
_%_y%—y%:om Q, (4.24)
Vgg(oa t) + y(ovt)p(oa t) =0, p(lv t) =0on (01 T)a (4'25)
p(T) = k(yr — y(T)). (4.26)

4.3.4. Iterative solution of the control problem (4.6)

Conjugate gradient algorithms are particularly attractive for large scale
nonlinear problems since their applications requires only — in principle — first
derivative information (see, e.g., Daniel (1970), Polack (1971) and Nocedal
(1992) for further comments and convergence proofs). Problem (4.6) is a
particular case of the minimization problem

{UGH,

j(u) < j(v), Yo € H, (4.27)

where H is a real Hilbert space for the scalar product (-,-) and the corre-
sponding norm || - || and where the functional j : H — R is differentiable; we
denote by 7'(v) (€ H'; H': dual space of H) the differential of j at v.

A conjugate gradient algorithm for solving (4.27) is defined as follows:

u® is given in H; (4.28)
solve
0
g €H,
{2 g, wen, (4:29)
and set
w® = g% (4.30)
For n > 0, assuming that u®, g", w" are known, compute u™t1, g"*1,
wn+1 by
Find p, € R such that (4.31)
](un - pnwn) < ](un - pwn)a Vp € R, ‘
set
u =" — ppu”, (4.32)
and solve
gn+1 c H,
AR (433)
IFllg™ /1160l < € take u = u™*!; else compute either
_ llg™
n = (Fletcher-Reeves update) (4.34);

19712
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or

n+l n+l _ n
Yn = (g ’“‘(; 2 g") (Polack—Ribiére update) (4.34)2

and then

n+1 n+1

W' =g" T+ ™. (4.35)

Don=mn+1 and go to (4.31).

We observe that each iteration requires the solution of a linear problem
((4.29) for n = 0, (4.33) for n > 1) and the line search (4.31). In most
applications the Polack—Ribiére variant of algorithm (4.28)-(4.35) is faster
than the Fletcher—Reeves one (see, e.g,, Powell (1976) for an explanation of
this fact).

Application to problem (4.6). Problem (4.6) is a particular case of (4.27)
where H = U = L*(0,T;RM); combining (4.19) and (4.28)—(4.35) we obtain
the following solution method for problem (4.6):

u® is given in U; (4.36)
solve
B_yo_y__82y0+ Oa—yo—f—}- %uoé(x—a )in Q
ot " Baz TY¥ or T T e e (4.37)
6y0 m= .
%(Oat) = ano(lvt) =0on (Oa T)a yO(O) = Yo,
and
8])0 321)0 Oapo )
"ot Ve Yag 0@
50 (4.38)1
v—(0,8) +5°(0,)p°(0,¢) = 0, p"(1,) = 0 on (0,T),
P’(T) = k(yr — y°(T)). (4.38);
Solve then
g elU; Vv €U, we have
T M T
[ & vat=3 [ %0 -Pamwnwa, 4
0 1 /0
and set
wl =gl (4.40)

Then for n > 0, assuming that u®, g", w" are known compute u™*!,

g"tl, wntl as follows.
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Solve the following one-dimensional minimization problem

pn €R,
s pow) < = pw, Vp e R (4.40)

and update u™ by

u™t! = u” — p,w". (4.42)
Next, solve
Syt §2qnt+1 M N _
yat -V 6yx2 =f+ Z u§(z — ay) in Q,
m=1 (4.43)
oyt nt1 nt1
e (0,t) =0,y""(1,t) =0 on (0,T), y""(0) = yo,
and
8pn+1 82pn+1 nt apn-H )
. Qf_l —v 52 -y o =0in Q,
v (0,6) + "0, (0,8) = 0, " (1,8) = 0 on (0,T),
(4.44),
p"NT) = k(yr — " THT)). (4.44)2
Solve then

gl eU; Vv el, we have

/ g .vdt = Z/ n—+—1 "H(am,t))vm(t) dt. (4.45)

If g™ lw/ |10l < € take u = u™tl; else compute either

T T
Yn = / g™t dt// lg" |2 dt (Fletcher—Reeves) (4.46)1
0 0

or

T T
Yn = / g'tlt. (g"t! — g dt// |g"™|?dt (Polack-Ribiére)  (4.46),
0 0

and update w" by
whtl = gt 4y wh, (4.47)

Don=n+1 and go to (4.41).

The practical implementation of algorithm (4.36)—(4.47) will rely on the
numerical integration of the parabolic problems (4.37), (4.38), (4.43), (4.44)
(to be discussed in Section 4.3.5) and on the efficiency and accuracy of the
line search (4.41); actually, to solve the nonlinear problem (4.41) we have

employed the cubic backtracking strategy advocated in Dennis and Schnabel
(1983, Ch. 6).
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4.3.5. Space-time discretization of the control problem (4.6). Optimality
conditions

We shall use a combination of finite element and finite difference methods
for the space-time discretization of problem (4.6); for simplicity, we shall
consider uniform meshes for both discretizations. We consider therefore
two positive integers I and At (to be ‘large’ in practice) and define the
discretization steps h and At by h = 1/I, At = T/N. Next, we define
x; =ih, i =0,1,...,I and approximate L?(0,1) and H(0,1) by

H,% ={zp ] 2p € CO[O, 1]azh|[z,-_1,m,'] eP,Vi=1,...,I}

where P; denotes the space of the polynomials in one variable of degree less
than or equal to one. The space V in (4.10) is approximated by

Vi = {zn | 2n € Hj, zp(1) = 0} (= VN Hy),
while the control space U(= L?(0,T;RM)) in (4.6) is approximated by
ust = @MV = {v|v={{vp 1} (4.48)

to be equipped with the following scalar product

N M
(v,w)ar = At Z Z Pk, Vv, w € UAL,

n=1m=1

We approximate then the control problem (4.6) by

in JE(v), 4.49
Join, Ji"(v) (4.49)

where the functional JhAt : Ut - R is defined by
TRHv) = 1(v,V)as + 3kly" = yrlliz(o, (4.50)

with ¥V defined from v via the solution of the following discrete Burgers
equation:

y® = yon € Hj, such that Jim flgor — yoll2(0,1) = 0; (4.51)
for n = 1,...,N we obtain y” from y®! via the solution of the following

discrete linear (elliptic) variational problem

y" € Vy; Vz € V;, we have

1,n n—1 1 n 1 n—1
Yy —y dy" dz / n—14y
v Y .4 =4 ~__.d
/0 At PN @t LY Tae P (4.52)

1 M
=/0 fzdz + Z v 2{ Q).

m=1
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Scheme (4.51), (4.52) is semi-implicit since the nonlinear term y(dy/dz) is
treated explicitly; we can expect therefore that At has to satisfy a stability
condition. It is easily verified that obtaining y" from y™ ! is equivalent
to solving a linear system for a matrix (the discrete analogue of operator
(I/At) — vd?/dx?) which is tridiagonal, symmetric and positive definite. If
At is constant over the time interval (0,T") this matrix being independent
of n can be Cholesky factored once for all.

The approzimate control problem (4.49) has at least one solution uﬁt =
{H{ur YM_ YN . Any solution of problem (4.49) satisfies the (necessary)
optimality condition

VIRt (uRt) =0, (4.53)

where VJ2t is the gradient of the functional J2t.
Following the approach taken in Section 4.3.3 for the continuous problem
(4.6) we can show that

(VIR V), w Atz Z m)w?, Vv, w e UA (4.54)

n=1m=1

where {p"}”_, is obtained from v via the solution of the discrete Burg-
ers equation (4.51), (4.52), followed by the solution of the discrete adjoint
equation, below.

Compute

1 1

pV*l €V, such that / PN lzds = k/ (yr —yN)zdz, Yz € Vi, (4.55)
0 0

and then forn = N, N—1,...,1, p" is obtained from p™*! via the solution

of the discrete elliptic problem

{ p" € Vi; we have

1,7 n+1 1
p"—p dp™ dz / n+1< dy™ >
N — dzx - =0.
/0 Al et az T ag?) de=0
(4.56)

The comments concerning the calculation of y™ from y™ ! still apply here;
actually, the linear systems to be solved at each time step to obtain p™ from
p"*! have the same matrix as those encountered in the calculation of y»
from ™1,

From (4.54), we can derive a fully discrete variant of algorithm (4.36)—
(4.47) to solve the approximate control problem (4.49) via the optimality
conditions (4.53); such an algorithm is discussed in Berggren and Glowinski
(1994).

4.8.6. Numerical experiments
Following Berggren and Glowinski (1994) (see also Dean and Gubernatis
(1991), Glowinski (1991)) we consider particular cases of problem (4.6) which
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Table 4. Summary of numerical results.

a 1/5 2/3
Number of
iterations 89 47
At T —
Ny (T) yT“L2(0,1) 9% 10-1 9 x 10-2
||yT||L2(o,1)
lugllLz0,7) 0.11 0.11

have in common:
T=1v=10"% k=8, yp=0,

_ lif{ ,t}€(0,1/2) (O,T),
fla,t) = { 21— 2 if {ab) e (f/z, 1) % (0,T),

yr(z) =1-z% if z € (0,1).

To discretize the corresponding control problems, we have used the methods
described in Section 4.3.5 with h = 1/128 and At = 1/256. The discrete
control problems (4.49) have been solved by the fully discrete variant of
algorithm (4.36)—(4.47) mentioned in Section 4.3.5, using u® = 0 as an
initial guess and € = 10™° as the stopping criterium.

First, several experiments were performed with a single control point
(M = 1) for different values of a(= a;). In Table 4 we have summarized
some of the numerical results concerning the computed optimal control uft
and the corresponding discrete state function y}‘}t:

For a = 1/5 (respectively a = 2/3) we have visualized on Figure 39(a)
(respectively Figure 40(a)) the computed optimal control u2 while on Figure
39(a) (respectively Figure 40(b)) we have compared the target function yr
(...) with the computed approximation y~t(T) (—) of y(T).

For a = 2/3 a good fit downstream from the control point can be noticed,
while the solution seems to be close to uncontrollable upstream. The posi-
tive sign of the solution implies that the convection is directed towards the
increasing values of xz, which is why it seems reasonable that the system
is at least locally controllable in that direction. The only way of control-
ling the system upstream is through the diffusion term, which is small here
(v = 1072) compared with the convection term. For the case a = 1/5 there
are clearly problems with controllability far downstream of the controller
(recall that there is a distributed, uncontrolled forcing term, f, which af-
fects the solution).

Figure 41 shows the target and the final state when two control points
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Fig. 39. (a) Graph of the computed control u2t(a = 1/5). (b) Comparison
between yr (...) and yo(T) (—) (a = 1/5).
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Fig. 40. (a) Graph of the computed control u5*(a = 2/3). (b) Comparison
between yr (...) and y24{(T) (—) (a = 2/3).
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0.9 b
0.8r ~ b
o7 \ J
0.6 i

0.5r J

yr yp ' (T)

0.4r D\ -
0.3 \ B
0.2r— \ 4

0.1} ‘\

0 1 Il I 1 1 L a1 Il 1

0 0.1 0.2 03 0.4 05 0.6 0.7 08 0.9 1
T

Fig. 41. Comparison between yr (...) and y0(T) (—) (a = {1/5,3/5}).

Table 5. Summary of numerical results.

a {1/5,3/5} {0.1,0.3,0.5,0.7,0.9}
Number of

iterations 86 82

lyn'(T) — yrli20,1)

2.5 %1072 85x 1073
HyT”L2(0,1)

are used, namely a; = 1/5 and ag = 3/5; the results are significantly better.
Actually the results become ‘very good’ (as shown on Figure 42) when one
uses the five control points a; = 0.1, as = 0.3, az = 0.5, a4 = 0.7 and
as = 0.9; in that case we are ‘close’ to a control distributed over the whole
interval (0,1). Some further results are summarized in Table 5.

Remark 4.4 Concerning the convergence of the conjugate gradient algo-
rithm used to solve the approximate control problems (4.49) let us mention
that

(i) The Fletcher—Reeves variant seems to have here a faster convergence
than the Polak-Ribiére one.

(ii) The computational time does not depend too much on the number
M of control points. For example the CPU time (user time on a SUN
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Fig. 42. Comparison between yr (...) and yp(T) (—) (a = {0.1,0.3,0.5,
0.7,0.9}).

Workstation SPARC10) was about 22 s for the case with one control point
at a = 1/5, to be compared with 27 s for the five control points test problem.
Thus, the time-consuming part is the solution of the discrete state and
adjoint state equations and not the manipulation of the control vectors (see
Berggren and Glowinski (1994) for further details).

Remark 4.5 In Berggren and Glowinski (1994) we have also addressed and
solved the more complicated problem where the control u and the location
a of the controllers are unknown; this new problem can also be solved by
a conjugate gradient algorithm operating in L?(0,T; RM) x RM; compared
with the case where a is fixed the convergence of the new algorithm is
much (about 4 times) slower (see, Berggren and Glowinski (1994) for the
computational aspects and for numerical results).

4.3.7. Controllability and the Navier-Stokes equations

Flow control is an important part of Engineering and from that point of
view has been around for many years. However the corresponding mathe-
matical problems are quite difficult and most of them are still open; it is
therefore our opinion that a survey on the numerical aspects of these prob-
lems is still premature.

It is nevertheless worth mentioning that a most important issue in that
direction is the control of turbulence motivated, for example, by drag reduc-
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tion (see, e.g., Buschnell and Hefner (1990) and Sellin and Moses (1989)).
Another important issue concerns the control of turbulent combustion as dis-
cussed in, e.g., McManus, Poinsot and Candel (1993) and Samaniego, Yip,
Poinsot and Candel (1993).

Despite the lack of theoretical results there is an enormous amount of
literature on flow control topics (see, e.g., the four above publications and
the references therein). Focusing on recent work in the spirit of the present
article, let us mention Abergel and Temam (1990), Lions (1991a), Glowinski
(1991), this list being far from complete. In the following we shall give
further references; they concern the application of Dynamic Programming
to the control of system governed by the Navier—Stokes equations.

5. DYNAMIC PROGRAMMING FOR LINEAR
DIFFUSION EQUATIONS

5.1. Introduction. Synopsis

We address in this section the ‘real time’ aspect of the controllability prob-
lems. We proceed in a largely formal fashion. The content of this section is
based on Lions (1991b)

We consider again the state equation

9y
— + Ay = 5.1
5 T AV = X0, (5.1)
now in the time interval (s,T),0 < s < T; the ‘%nitial’ condition is
y(s) = h, (5.2)
where h is an arbitrary function in L?(12); the boundary condition is
y=0onXs; =T x(s,T). (5.3)

Consider now the following control problem

inf 1 / / v dedt, v e L2(O x (s,T)) so that y(T;v) € yr + BB,
2 J Jox(s,T)

(5.4)

where in (5.4), 8 > 0, B is the closed unit ball of L?(2) centred at O,
yr € L3(Q) and t — y(t;v) is the solution of (5.1)-(5.3).

The minimum in (5.4) is now a function of h and s, we define ¢(h, s) by

¢(h, s) = minimal value of the cost function in (5.4). (5.5)

We now derive the Hamilton-Jacobi-Bellman (HIJB) equation satisfied by
¢ on x(0,T).
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5.2. Derivation of the Hamilton—Jacobi—-Bellman equation
As we said above, we shall proceed in a largely formal fashion. We take
v(z,t) = w(z) in (s,s +¢€), € > 0 ‘very small’. (5.6)

With this choice of v, the state function y(t) moves during the time interval
(s,s+¢) from h to an element ‘very close’ to

he = h — eAh + cwxo, (5.7)

assuming that h € H2(Q) N H(Q) (k. is obtained from h by the ezplicit
Euler scheme).

On the time interval (s+¢,T") we consider the whole process starting from
he at time s + . The optimality principle leads to

¢(h,s) = hul}f [—;— / w? dz + ¢(he, s + 5)] + ‘negligible terms’. (5.8)
O

Taking now the e-expansion of the function ¢(h., s + €) we obtain

d(he,s+e) = ¢(h—eAh+ecwxo,s+e¢),
_ _ (2 ¢
= $(hz)—¢ (ah(h,s),Ah) te <8h(h 5, on)
+sg—f(h, s) + higher-order terms, (5.9)
where

10) . . d -
(Geh9) k) = tim -0+ \h.s),
with h and A in L?(9) and, actually, smooth enough so that h and h belong
to H2(2) N H(Q).

Combining (5.8) to (5.9), dividing by &, and letting £ — 0, we obtain

igf B/@w2 dz — (g—i(h,s),Ah) + (gi( ),wxo) + g—f(h, s)] =0;
(5.10)

hence it follows that

g«s(h )+(gi( ) /( hS) dr=0.  (5.11)

The functional equation (5.11) is the Hamilton—Jacobi-Bellmann equa-
tion. It is a partial differential equation in infinite dimensions since h €
L?(Q) (in fact, h € H*(Q) N H}(N)), and where s € (0,T).

We have to add an ‘initial’ condition, here for t = T, since we integrate
(5.11) backward in time.

When s — T, we have less and less time to ‘correct’ the trajectory. There-
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fore (this is again formal but it can be made precise without difficulty)

¢(h,T)={ 0if h e yr + 8B,

400 otherwise. (5.12)

5.3. Some remarks

Remark 5.1 The ‘solution’ of equations (5.11) and (5.12) should be defined
in the framework of the viscosity solutions of Crandall and P.L. Lions (1985;
1986a,b; 1990; 1991), which was generalized by those authors to the infinite-
dimensional case, which is the present situation.

Remark 5.2 Let h be given in L?(Q) and let yp, be the solution of
0
%+Ayh=01nﬂx (s,T), yn(s) =h, yp =0o0n s (5.13)

(i.e. we choose v = 0 in (5.1)—(5.3)). Let us denote by E, the set of those
functions A in (5.13) such that

yn(T) € yr + BB. (5.14)
We clearly have (from (5.11), (5.12))
¢(h,s) =0if h € E,. (5.15)

We can — formally — draw the picture of Figure 43.

Remark 5.3 As usual in the dynamic programming approach, the best
decision at time s corresponds to the element w in L?(Q) which achieves
the minimum in (5.10), namely

o¢
"%(h,s)XOv (516)
This is the ‘real time’ optimal policy — provided we know how to compute
(0¢/0h)(h,s) — a formidable task indeed!

Remark 5.4 The Duality formulas of Section 1.4 can of course be applied.
We obtain

¢(h,s) = — inf B//Ox( $* dz dt —/Qf(yT -~ yu(T)) dz + 5||f||L2(9)},

u(s) =

feL2(q) s,T)
. (5.17)
where yj, is defined by (5.13) and where 1 is defined by

Remark 5.5 Dynamic programming has been applied to the closed loop
control of the Navier-Stokes equations for incompressible viscous flow in
Sritharan (1991a,b).
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Fig. 43. Distribution of ¢ in the set L%(Q) x (0,T).
6. WAVE EQUATIONS

6.1. Wave equations: Dirichlet boundary control

Let Q be a bounded open set in R, with a smooth boundary I'. In Q =
2 x (0,T), we consider the wave equation

0%y

2 + Ay =0, (6.1)
where A is a second-order elliptic operator, with smooth coefficients, and
such that

A= A" (6.2)
A classical case is
2. P
A=—A<=—V :”ga_w,?)' (6.3)
We assume that
0 =0, X)=o, (64
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and we suppose that the control is applied on a part of the boundary. More
precisely, let I'g be a ‘smooth’ subset of I'. Then

_ [ wvonXg=Tyx(0,T),
Y=Y 0on=\Z, = =T x (0,7T).
We denote by y(v) : t — y(t;v) the solution of the wave problem (6.1), (6.4),

(6.5), assuming that the control v satisfies ‘some’ further properties. Indeed,
we shall assume that

(6.5)

v € L2(%o), (6.6)

since this is — as far as the control itself is concerned! — certainly the simplest
possible choice. However, a few preliminary remarks are necessary here.

Remark 6.1. Even assuming that T, I'g and the coefficients of operator A
are very smooth, once the choice (6.6) has been made, one has to deal with
weak solutions of (6.1), (6.4), (6.5). In fact (cf. Lions (1988a) and (1988b,
Vol. 1)) the (unique) solution y(v) of (6.1), (6.4), (6.5) satisfies the following
properties

y(v) is continuous from [0, T] to L%(£2), (6.7)
y:(v) is continuous from [0,T] to H™ (), (6.8)
where, in (6.8) and in the following, we have set

_ By _ &%
wr = 5?, Y = W

The solution y = y(v) is defined by transposition as in Lions and Magenes
(1968). If we consider the adjoint equation

pi + Ap = fin Q,
{ SOt(tT) =@(T)=0, ¢=0o0nx%, (6.9)

where f € L'(0,T; L?(f)), then y is defined by

/yfda:dtz —/ 9% ,ds, (6.10)
Q o Ong
where 0/0n4 denotes the normal derivative associated with A (it is the
usual normal derivative if A = —A). The linear form
f—- 8_gpv dx
To Ona

is continuous over L'(0,T; L?()); this is the key point since we can show
that

< ClIfllzro,rL2(0))- (6.11)

‘ OS¢
L3(Z)

ong
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One uses then the restriction of d¢/0n 4 to Ly and therefore
y € L®(0,T; L?()).
One proceeds then to obtain (6.7), (6.8).

Remark 6.2. The original proof (Lions (1983)) assumes that I is smooth.
Strangely enough, it took ten years — and a nontrivial technical proof — to
generalize (6.11) to Lipschitz boundaries (in the sense of Necas (1967)); this
was done by Chiara (1993).

We now want to study the controllability for systems modelled by (6.1),
(6.4), (6.5), i.e., given

T <T < +00), given {2°, 2'} € L*(Q) x H~1(Q),
can we find v such that

{ y(T;v) = 2% or y(T;v) ‘very close’ to 20,

y+(T;v) = 2! or y(T;v) very close’ to zL. (6.12)

There is a fundamental difference between the present situation and those
discussed in Sections 1 and 2 for diffusion equations, due to the finite propa-
gation velocity of the waves (or singularities) the solution is made of, whereas
this velocity is infinite for diffusion equations (and for Petrowsky’s type
equations as well). It follows from this property that

Conditions (6.12) may be possible only if T is sufficiently large. (6.13)

This will be made precise in the following sections.

6.2. Approximate controllability
For technical reasons, we shall always consider the mapping
L:v— {—y(T;v),y(T;v)} (6.14)

(which is a continuous linear mapping from L?(Zg) into H~1(2) x L3(?)),
instead of the mapping

v — {y(T;v), y:(T;v)}

(but this does not go beyond simplifying — we hope — some formulae).
Let us first discuss the range R(L) of operator L; we consider thus f =
{£°, f1} such that

f € H}(Q) x L*(Q) (6.15)

and
(Lv,f) =0, Yove L3(%o), (6.16)
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i.e.
—(ys(T; ), fO) + / y(T;v)fldz =0, Yo € L?(%y); (6.16)'
Q
in (6.16) (respectively (6.16)"), (-,-) denotes the duality pairing between

H=Y(Q) x L2(Q) and H(Q) x L%(Q) (respectively H~(Q) and H}(Q)).
We introduce v solution of

Yt + Ap =0in Q=0 x(0,T), %(T)=f° ¢u(T)=f', ¥ =00n%.

(6.17)
It is a smooth solution, which satisfies in particular
o 2 0 0 1
- — < . 1
Bns © L*(%), I CU Nmp @ + 1 2e) (6.18)

Multiplying the first equation in (6.17) by y and integrating by parts, we
obtain

oY
= Zyas. 6.19
(Lv,f) s, B (6.19)
Thus (6.16) is equivalent to
Fo;
?9%{ —0on Y. (6.20)

Therefore the Cauchy data are zero for 1 on £y. According to the Holmgren’s
Uniqueness Theorem (cf. Hormander (1976)) it follows that

If T > 2(diameter of Q), then {y(T;v),y:(T;v)}

describes a dense subspace of L2(Q) x H™ (1) (6.21)
(in (6.21), the ‘diameter’ of Q is related to the geodetic distance associated
with A. It is the usual geodetic distance if A = —A).

Indeed, according to Holmgren’s Theorem, we have ¢y = 0 so that f =0
(see, for example, Lions (1988b, Vol. 1)).

Remark 6.3. Holmgren’s theorem applies with the conditions

=0 and 8—¢=Oon20,
ong

without having necessarily ¥ = 0 on X\Xy. The fact that in the present
situation we have 1) = 0 on the whole ¥ provides some more flexibility to
obtain uniqueness results. We shall return to this later on.

6.3. Formulation of the approximate controllability problem
We shall make the following hypothesis:

3o allows the application of the Holmgren’s Uniqueness Theorem.
(6.22)
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Then, {2°, 2!} being given in L2(Q2) x H~1(Q), there always exist controls
v (actually an infinite number of them) such that

y(T;v) € 2°+ BoB, u:(T;v) € 28 + B1B_1, (6.23)

where B (respectively B_;) denotes the unit ball of L2(f2) (respectively
H~1(Q)), and where 39, 3; are given positive members, arbitrarily small.
The optimal control problem that we consider is

1
inf - v?dE, v satisfying (6.23). (6.24)
Yo

Remark 6.4. Ezact controllability corresponds to Gy = 31 = 0.

6.4. Dual problems

We proceed essentially as in Section 1.4. We introduce therefore
1

Fi(v) =3 g v2dE, Vv € LE(%y), (6.25)
0

and then Fy : H~1(Q) x L*(Q) —» RU {+} by

0if f€ —2'+ 41B_1 and f' € 20+ By B,
+o00 otherwise.

Fy(f) = R(f°, 1) = {

(6.26)
With this notation, the control problem (6.20) can be formulated as

veli,rzl(on)[Fl(v) + Fy(Lv)). (6.27)

Using, as in Section 1.4, Duality Theory we obtain

/ [Fiv) + Fy(Lo)|+ inf  [Fr(LD) + Ej ()] =0, (6.28)
veL?(Zo) feHL(Q)xL2()

where
Fi(v) =+ / W dE, Vo € LX), (6.29);
2 Js,
Fg*(f) = _§z1, o) + Jo 22 da + ﬁl”fOHHg(Q) + Boll 1l 2 (), (6.29)s
vE = {f° f1} € H}(Q) x L2(Q). '
Using (6.19) we have
= on %o, (6.30)

Ong
where 1) is given by (6.17) (with f = f). We have therefore the following
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Theorem 6.1 We suppose that (6.22) holds true. For 3y and [ given
arbitrarily small, problem (6.24) has a unique solution such that

A\ 2
inf1 v?dY = —inf Izl/ (—a-g) dz + (21, f°)
£ 12/

v 2 Js, ona

= [ do 4 Bl Pl + ol 2oy |
(6.31)

where, in (6.31), v € L%(So) and verifies (6.23), f € H}(Q) x L*(Q), and
where v is given by (6.17), with f = f£.

The dual problem is the minimization problem in the right-hand side of
(6.31). If f is the solution of the dual problem and if ¢ is the corresponding
solution of (6.17) then the optimal control, i.e. the solution u of problem
(6.24) is given by

oY

= — 0. 6.32
U s on ¥ (6.32)

6.5. Direct solution of the dual problem

One can formulate the dual problem in an equivalent fashion which will be
useful when 3y and (31 converge to zero, and also for numerical calculations.
To this effect, we introduce the following operator A:
Given f = {f°, f1} € H3(Q) x L%(Q), we define ¢ and § by

Ybu+AYp=0inQ, ¥T)=f y(T)=F", dy=00n%, (6.33)

) o ) ) O .
I+ Ay=0inQ, 90)=45(0)=0, §= —dj on ¥y, g =0 on X\,

ong
(6.33)2
and we set
Af = {-3(T), 9(T)}- (6.34)
We define in this way an operator A such that
A € L(HYQ) x L2(Q); HTH(Q) x L3(Q)). (6.35)

If we multiply both sides of the first equation in (6.33)2 by ¥’ (which corre-
sponds to ' € H}(Q) x L?(£2)) and if we integrate by parts we obtain (with
obvious notation):

7 i
£ f %aw ds

, —
(Af,§) = | B (6.36)

It follows from (6.36) that the operator A is self-adjoint and positive semi-
definite.
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The dual problem is then equivalent to

Hflf §<Afaf>+<zl»f0>_/onfldx-h@l”fOHHé(Q)+ﬂ0”f1||L2(Q) , (6.37)

where, in (6.37), f € H}(Q) x L3(Q).

Assuming that the condition (6.22) holds true, problem (6.37) has a unique
solution for Gy and (31 > 0, arbitrarily small. If we denote by f the solu-
tion of problem (6.37) it is also the solution of the following variational
inequality

f € HN Q) x L2(Q); Vf € H} () x L*() we have

(A£, £ —£) + (21, fO - fO) — /on(f1 - fHde
+681(1F 2y = 171l en3 o)

+Bo(| I 2y — 1 1 z2() = O (6.38)

Remark 6.5. Problems (6.37), (6.38) are equivalent to the minimization
problem in the right-hand side of (6.31), but they are better suited for the
solution of the dual problem.

Remark 6.6. The operator A is the same as the one introduced in the
Hilbert Uniqueness Method (HUM). This is made more precise in the fol-
lowing section (see also Lions (1986; 1988a,b)).

Remark 6.7. Relation (6.36) makes sense, because there exists a constant
C such that

52
3’¢ £012 71
/zo Ona dx < (Il f ||H5(Q) + 1 22 )s (6.39)

where, in (6.39), ¢ and f = {fo, f1} are related by (6.33).

6.6. Exact controllability and new functional spaces

Let us now consider problem (6.37), (6.38) with the idea of letting Gy and
B converge to zero. We introduce on H(Q) x L2(f2) the following new
functional

[f1 = ((Af, F))2. (6.40)

Since we assume that the condition (6.22) holds true, the functional [} is in
fact a norm, of a pre-Hilbertian nature. We introduce then

E = Completion of H}(Q) x L*(Q) for the norm []; (6.41)
with this notation we can state that

A is an isomorphism from E onto E’. (6.42)
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If By = B1 = 0, problem (6.37), (6.38) is equivalent to
1 - " A A
int | S[77 4+ (4, ) —/ O dx] C Fe HMQ) x I2(Q).  (6.43)
f Q

Problem (6.44) has a unique solution if and only if
{-21,2°) ¢ E. (6.44)

If we denote by fg = {3, f}} the solution of problem (6.37), (6.38), where
B = {Bo, 51}, then

%im0 fs = fy = the solution of (6.43) (6.45)

if and only if condition (6.44) holds true.

Remark 6.8. The method of solution that we have just presented is what
is called HUM (Hilbert Uniqueness Method) (cf. Lions (1986; 1988a,b)) since
the key element is the introduction of the new Hilbert space E based on a
uniqueness property.

Remark 6.9. Problems (6.38) or (6.43) give a constructive approach to
approximate or exact controllability; we shall make this more precise in the
next sections.

Remark 6.10. Condition (6.44) means that exact controllability is possible
if and only if 2° and 2! are taken in a convenient Hilbert space.

Remark 6.11. The approach taken in the present section is closely related
to the one followed in Section 1.5. With the notation of Section 1.5, Remark
1.14, we would have

E = HY(Q) x L2(Q).

There is, however, a very important technical difference between the two
situations, since for the diffusion problems discussed in Section 1 the space
L2(Q) is never a ‘simple’ distribution space (except for the case O = Q, i.e.
the control is distributed over the whole domain ). For the wave equation
the situation is quite different, as we shall see in the next section.

6.7. On the structure of space E

We follow here Bardos, Lebeau and Rauch (1988).

We shall say that 3 enjoys the geometrical control condition if any ray,
starting from any point of Q at ¢t = 0, reaches eventually (after geometrical
reflexions on I') the set 'y before time ¢t = T'.

The main result is then

If X satisfies the geometrical control condition, then E = Hj(Q) x L%(1).
(6.46)
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Actually the geometrical control condition is also necessary in order (6.46)
to be true. The inequality corresponding to (6.46) is the reverse of inequality
(6.39): there exists a constant C; > 0 such that

52
oy £0)|2 1112
Lo s> el Py + 17 1) (6.47
if and only if ¥y satisfies the geometrical control condition.

Remark 6.12. We refer to Lions (1988b) for the various contributions, by
many authors, which led to the fundamental inequality (6.47).

Remark 6.13. If X does not satisfy the geometrical control condition, but
does satisfy the conditions for the Holmgren’s Uniqueness Theorem, then

A=(L 2 dz)w

is a norm, strictly weaker than the H}(Q) x L?(2) norm. In that case E is
a new Hilbert space, such that

H}(Q) x L*(Q) C E, strictly, (6.48)

and the exact structure of E is far from being simple, since the space E can
contain elements which are not distributions on §2.

6.8. Numerical methods for the Dirichlet boundary
controllability of the wave equation

6.8.1. Generalities. Synopsis

In this section which is largely inspired by Dean, Glowinski and Li (1989),
Glowinski et al. (1990), Glowinski (1992a) we shall discuss the numerical so-
lution of the exact and approrimate Dirichlet boundary controllability prob-
lems considered in the preceding sections.

To make it simpler we shall assume that 3 satisfies the geometrical control
condition (see the above section), so that

E = HYQ) x L*(Q), (6.49)

and the operator A defined in Section 6.5 is an isomorphism from E onto
E'(= H71(Q2) x L?(f2)). The properties of A (symmetry and strong elliptic-
ity) will make the solution of the exact controllability problem possible by
a conjugate gradient algorithm operating in the space E. We shall describe
next the time and space discretizations of the exact controllability problem
by a combination of finite difference (FD) and finite element (FE) methods
and then discuss the iterative solution of the corresponding approximate
problem. Finally we shall describe solution methods for the approzimate
boundary controllability problem (6.24).
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Both exact and approximate controllability problems will be solved using
their dual formulation since the corresponding control problems are easier
to solve than their primal counterparts.

The results of numerical experiments obtained by the methods described
in the present section will be reported in Section 6.9, hereafter.

Remark 6.14. A spectral method — still based on HUM — for solving directly
(i.e. noniteratively) the exact Dirichlet boundary controllability problem is
discussed in Bourquin (1993), where numerical results are also presented.

6.8.2. Dual formulation of the exact controllability problem. Further prop-
erties of A
To obtain the dual problem corresponding to exzact controllability it suffices
to take By = 31 = 0 in formulations (6.37), (6.38); we obtain then

Af = {2120} (6.50)

Since we supposed (see Section 6.8.1) that the geometrical control condition
holds, we know (from Section 6.6) that

A is an isomorphism from E onto E’, (6.51)

with E = H}(Q) x L2(Q), E' = H~1(Q) x L?(Q2). Problem (6.50) has there-
fore a unique solution, ¥{z°, 21} € L2(2) x H~1(Q). The solution f of (6.50)
is also the solution of the following linear variational problem

{ feE; v ={f° f1} € E we have

<Af, ?) = —(zl’fA0> _|_/ Zofl dz. (652)
Q

Since (from Sections 6.5 to 6.7) A is continuous, self-adjoint and strongly
elliptic (in the sense that there exists C' > 0 such that

(Af,f) > C|E||;, VE€E)
the bilinear functional
{£,f} > (A fY: ExE —-R
is continuous, symmetric and E-elliptic over E x E. On the other hand, the
linear functional in the right-hand side of (6.52) is clearly continuous over
E, implying (cf. Section 1.8.2) that problem (6.50), (6.52) can be solved by

a conjugate gradient algorithm operating in the space E. such an algorithm
will be described in the following section.

Remark 6.15. We suppose here that I'g = I" and that A = —A; we suppose
also that there exists xg € Q2 and C' > 0 such that

—
zoM -n=C, VM eT, (6.53)

with n the unit vector of the outward normal at I', at M. Domains satisfying
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(6.53) are easy to characterize geometrically, simple cases being disks and

squares. Now let us denote by Ar the operator A associated with T'. It has

been shown by J.L. Lions (unpublished result) and Bensoussan (1990) that
Ar 1 [—A O]

lim —& = o 1 (6.54)

T—too T 5

Result (6.54) is quite important for the validation of the numerical meth-
ods described hereafter, since it easily provides

. _ (0 1
plim Tty = {x"x'} (6.55)
where, from (6.54),
AX’=Cz'inQ, x°=0onT, (6.56)
x! = C2°. (6.57)

6.8.8. Conjugate gradient solution of problem (6.50), (6.52).

Assuming that the geometrical control condition holds, it follows from
Section 6.8.2. that we can apply the general conjugate gradient algorithm
(1.122)—(1.129) to the solution of problem (6.50), (6.52); indeed, it suffices
to take

V= E,CL(', ) = <A, '>3 L: f - —<Zlaf0> +/ Zofl dz.
Q
On E, we shall use as scalar product
{v,w} — / (Vo? . Vo +vlwl)dz, Vv,wcE.
Q

We obtain then the following algorithm
Algorithm. Step 0: Initialization

e HY(Q) and f} € L3(Q) are given; (6.58)
solve then
2
9"%o 1€0+A¢0=0inQ, Yo =0on %,
ot o (6.59)
lbO(T) = f(()), W(T) = f(%’
and
2
8_?2.94_‘,4900: inQ, (poza—%— on Xg, <p0=00n2\20,
at ) dna (6.60)
20(0) =0, Z2(0)=0.
Compute go = {90, 95} € E by
—Agd =2 - %(T) in,¢)=00onT, (6.61)

ot
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g0 = #o(T) = 2°, (6.62)
respectively. Set then
w(o = go. (6.63)

Now, for n > 0, assuming that £,,gn, w, are known, compute f,+1, En+1,
w41 as follows.
Step 1: Descent

Solve
2 7 -_— —
0 1@"+Awn:OinQ, Y, =0 on X,
ot 5% (6.64)
Un(T) =wn, —2(T) = wy,
ot
Fen |, . . oyn _
5 + Ay, ;_0 in@, @,= B on Xy, @n =0 on X\,
5 (0) = 9¥n 4y =
(6.65)
o _ 9¢n . 0
Ag, = W(T) inQ,g, =0onT, (6.66)
and set
gl = @n(T). (6.67)
Compute now
b= [V +lgiP)de/ [ (Va2 Vul+gludydz,  (6:68)
Q
frt1 =fn — pnWa, (6.69)
Bn+l = 8n — Pnn. (6.70)

Step 2: Test of the convergence and construction of the new descent di-
rection. If gni1 = 0, or is sufficiently small (i.e.

L0Vl + gl e/ [(VGE+igPde<d) (671
take f = £,11; if not, compute
= (V2P +lghaPYds [ [(VglP +ighP)az,  (672)
and set
Wn+l = Bn+1 + Y'nWn. (673)

Don=n+1 and go to (6.64).
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Remark 6.16. It appears at first glance that algorithm (6.58)—(6.73) is
quite memory demanding since it seems to require the storage of 81, /0nals,
(in practice the storage of 8¢, /On 4 over a discrete — but still large — subset
of ¥p). In fact, we can avoid this storage problem by observing that since
the wave equation in (6.64) is reversible we can integrate simultaneously,
from 0 to T, the wave equations (6.65) and

Piln o oo o
e + wn_—Oln Q, Yn=0o0nZx,
¥, (0) and %(O) known from the integration of (6.64) from T to 0.

(6.74)

In the particular case where an explicit scheme is used for solving the
wave equations (6.64), (6.65) and (6.74), the extra cost associated with the
solution of (6.74) is negligible compared with the saving due to not storing

Ovn/On 4 on L.

Remark 6.17. Once the solution f of the dual problem (6.50), (6.52) is
known it suffices to integrate the wave equation (6.33); with f = f to obtain
1. The optimal control u, solution of the exact controllability problem is
given then by

oY

u = % ZOA (675)

6.8.4. Finite difference approzimation of the dual problem (6.50), (6.52)

6.8.4.1. Generalities. An FE/FD approximation of problem (6.50), (6.52)
will be discussed in Section 6.8.7 (see also Glowinski et al. (1990), Glowin-
ski (1992a), and the references therein). At the present moment, we shall
concentrate on the case where

Q=(0,1)2, A=-A, To=TI,

and where FD methods are used both for the space and time discretizations.
Indeed, these approximations can also be obtained via space discretizations
associated with FE grids like the one shown on Figure 1 of Section 2.6 (we
should use, as shown in Glowinski et al. (1990), piecewise linear approxima-
tions and numerical integration by the trapezoidal rule).

Let I and N be positive integers; we define h (space discretization step)
and At (time discretization step) by

1 T
h=——, At

(I+1) N (6.76)

respectively, and then denote by M;; the point {ih, jh}.



EXACT AND APPROXIMATE CONTROLLABILITY 261

6.8.4.2. Approzimation of the wave equation (6.33);. Let us first discuss
the discretization of the following wave problem

{ Y —AYp=0inQ, P =0o0n%,
W(T) =f° (T) = f.

With ¢7; an approximation of ¢(M;;, nAt), we approximate (6.77) by the
following explicit FD scheme

-1 1
VTV 2 Wiy iy Yl O 4

(6.77)

|At|? h? 0
1<4,j<I, 0<n<N,
(6.78),
1/),7& =0 if MyeT, (6.78)2

vy = (M), FT -l =24t (M), 1<4,j<I.  (6.78)3

To be stable, the above scheme has to satisfy the following (stability)
condition

At < h/V2. (6.79)

6.8.4.3. Approzimation of (01 /0n)|s. Suppose that we want to approxi-
mate 0y /0n at M €T, as shown in Figure 44. Suppose that v is known at
E; we shall then approximate dv/0n at M by

oY . Y(E) = (W)
on (M) ~ 2h ’
In fact, ¥(E) is not known since E ¢ Q. However — formally at least —
1 = 0 on ¥ implies ¥y = 0 on X, which combined with ¥;; — Ay = 0 implies
Ay = 0 on I; discretizing this last relation at M yields
Y(W) + Y(E) +$(N) +9(S5) — 49p(M)
2
Since N, M, S belong to I, (6.81) reduces to

P(W) = —y(E), (6.82)
which combined with (6.80) implies that

0 1) o W) _ 0= 0(W) _ $(M) = (W)

h h h )
In that particular case, the centred approximation (6.80) (which is second-
order accurate) coincides with the one-sided one in (6.83) (which is only
first-order accurate, in general). In the sequel, we shall use, therefore, (6.83)
to approximate dy¥/9n at M and we shall denote by ;9 the corresponding
approximation of 9y /0n at My € T.

(6.80)

=0. (6.81)

(6.83)
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Fig. 44.

6.8.4.4. Approzimation of the wave problem (6.33),. Similarly to (6.33);,
the wave problem (6.33)2, namely here,

. 0
{ ot —Ap=01in Q, Soza—:ionza (6.84)
¢(0) =0, ¢(0)=0
will be approximated by
I I s TR R TR e
|At|? h? ’
1<4,j<I, 0<n<N,
(6.85)1
P = 0uy” if My €T, (6.85)2
1 -1
0 Pi; — Pij .
=0, —— = 1< <1 .
901] ) At Oa IS PR I (6 85)3
6.8.4.5. Approzimation of A. Starting from
_ 0 1
fh = {{fijvfij}}lgi’jgl

and via the solution of the discrete wave equations (6.78), (6.85) we approx-

imate Af by
N+1 N-1
Pij T Py
ADHy, = {{————J AT Y ,gofj.}} (6.86)
1<4,5<I

It is proved in Glowinski et al. (1990, pp. 17-19) that we have (with
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obvious notation)

N+1  N-1
R R 0 — @ R
(AR, BnYnae = R? > l‘ﬁgle] - (——“ SAL = ) f?j}

1<i,§<I

N
= hAt z Qp Z 6k11/)n5k11/}n, (687)

n=0 My, eT*
where, in (6.87), 0 =any =1,a,=1,V¥n=1,...,N—1, and whereI* =T
minus the four corners {0,0}, {0,1}, {1,0}, {1,1}. It follows from (6.87)
that Aft is symmetric and positive semi-definite. Actually, it is proved in
Glowinski et al. (1990, Section 6.2) that AhAt is positive definite if T > Tiyin =
At/h. This property implies that if T'(> 0) is given, it suffices to take At/h
sufficiently small to have exact boundary controllability for the discrete wave
equation. This property is in contradiction with the continuous case where
the exact boundary controllability property is lost if T is too small (T < 1
here). The reason for this discrepancy will be discussed in the following.

6.8.4.6. Approzimation of the dual problem (6.50), (6.52). With zy, a conve-
nient approximation of z = {2°, 2!} we approximate problem (6.50), (6.52)
by

ADHA = oz, (6.88)

where, in (6.88), o denotes the matrix <(1) _01 ) In Glowinski et al. (1990,

Section 6.3), one may find a discrete variation of the conjugate gradient
algorithm (6.58)-(6.73) which can be used to solve the approximate problem
(6.88).

6.8.5. Numerical solution of a test problem; ill-posedness of the discrete
problem (6.88)

Following Glowinski et al. (1990, Section 7), Dean et al. (1989, Section
2.7), Glowinski (1992a, Section 2.7) we still consider the case Q = (0,1)2,
[o=T, A= —A; we take T = 3.75/v/2 (> 1, so that the exact controlla-
bility property holds) and f = {f°, f!} defined by

fOz1, z2) = sinwzysinmay, f1 = —wv2f°. (6.89)

It is shown in Glowinski et al. (1990, Section 7) that using separation of
variables methods we can compute a Fourier Series expansion of Af. The
corresponding functions 2° and 2! (both computed by Fast Fourier Trans-
form) have been visualized on Figures 45 and 46, respectively (the graph on
Figure 46 is the plot of —z1).

From the above figures, 20 is a Lipschitz continuous function which is not
C*; similarly, z! is bounded but discontinuous. On Figure 47, we have shown
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Table 6. Summary of numerical results (n.c.: no convergence)

h 3 Te 32 O
Number of

conjugate gradient 20 38 84 363 n.c.
iterations

10 = Ol 2 042x 10! 018x10"! 041x10"! 3.89 n.c.
lFo — f,9||H3(Q) 0.65 0.54 2.54 498.1 n.c.
IFt— f*1||Lz(Q) 0.20 0.64 x 1071 1.18 1706 n.c.
llu — us|| L2 () 0.51 0.24 0.24 1.31 n.c.
Nusllz2(z) 7.320 7.395 7.456 7.520 n.c.

the plot of the function ¢t — ||0v/0n(t)| r2(r)y where ¥, given by

U(z,t) = V2cos V2 (t — %) sin 7z sin wxa,
is the solution of the wave equation (6.77) when f° and f! are given by
(6.89); we recall that 9Y/0n|s(= u) is precisely the optimal Dirichlet control
for which we have exact boundary controllability.

The numerical methods described in Sections 6.8.3 and 6.8.4 have been
applied to the solution of the above test problem taking At = h/+/2. Inter-
estingly enough, the numerical results deteriorate as h and At converge to
zero; moreover, taking At twice smaller, i.e. At = h/ 2v/2, does not improve
the situation. Also, the number of conjugate gradient iterations necessary
to achieve convergence increases as h and At decrease. Results of the nu-
merical experiments are reported on Table 6. In Table 6, f2, f! and u., are
the computed values of fO, f! and u respectively.

The most striking fact coming from Table 6 is the deterioration in the
numerical results as h and At tend to zero; indeed, for h = 1/128, conver-
gence was not achieved after 1000 iterations. To illustrate this deterioration
further as h and At — 0 we have compared, in Figures 48 to 51, f° and
f! with their computed approximations f0 and f!, for h = 1/32 and 1/64;
we observe that for A = 1/64 the variations in f0 and f} are so large that
we have been obliged to use a very large scale to be able to picture them
(indeed we have plotted — f!, —f!)

If, for the same values of h, one takes At smaller than h/v/2, the results
remain practically the same. In Section 6.8.6, we shall try to analyse the
reasons for this deterioration in the numerical results as h — 0 and also to
cure it. To conclude this section we observe that the error ||u — u.|r2(x)
deteriorates much more slowly as A — 0 than the errors f0 — 9, f1 — fl; in
fact, the approximate values ||u«||z2(xy of [|ullz2(x) are quite good, even for
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h = 1/64 if one realizes that the exact value of |lul|2(x) is 7.38668... For
further illustrations and more details see Glowinski (1992a, Section 2.7) and
the references therein.

6.8.6. Analysis and cures of the ill-posedness of the approrimate problem
(6.88)

It follows from the numerical results discussed in Section 6.8.5, that when
h decreases to zero, the ill-posedness of the discrete problem gets worse.
From the oscillatory results shown in Figures 48 to 51 it is quite clear that
the trouble lies with the high-frequency components of the discrete solution
or, to be more precise, with the way in which the discrete operator A,?t acts
on the short-wavelength components of f;,. Before analysing the mechanism
producing these unwanted oscillations let us introduce a vector basis of R’*7
well suited to the following discussion. This basis By, is defined by

‘

By = {wpqh1<pe<r, (6.90)

Wpg = {Slllp?'l’lh X sinqwjh}lsing; (69]_)

we recall that h =1/(] +1).

From the oscillatory results described in Section 6.8.5 it is reasonable to
assume that the discrete operator Aﬁt damps too strongly those components
of tht with large wavenumbers p and ¢; in other words, we can expect that
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if p and/or ¢ are large then AL {wpq, 0} or ALH{0, Wpq} will be quite small
implying in turn (this is typical of ill-posed problems) that small perturba-
tions of the right-hand side of the discrete problem (6.88) can produce very
large variations in the corresponding solution.

Operator Aﬁt is fairly complicated (see Section 6.8.4 for its precise defi-
nition) and we can wonder which stage in it in particular acts as a low pass
filter (i.e. selectively damping the large wavenumber components of the dis-
crete solutions). Starting from the observation that the ill-posedness persists
if, for a fixed h, we decrease At, it is then natural (and much simpler) to
consider the semi-discrete case, where only the space derivatives have been

discretized.

_In such a case, problem (6.77) is discretized as follows (with ¥ = o /o,
Y = 0% /0t?) if @ = (0,1)? as in Sections 6.8.4, 6.8.5:

wz 7

_ i1y + iy + i + Yij1 — 4

h2
Y = 0 if {kh,lh} €T,

Consider now the particular case where

f}? = Wpgq, fi% =0.

=0, 1<4,j<],

1<i,j<L

(6.92),

(6.92),
(6.92)3

(6.93)

Since the vectors wp, are for 1 < p,q < I the eigenvectors of the discrete
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Laplace operator occurring in (6.92); and that the corresponding eigenvalues
Apg(h) are given by

4 (. h . h
Apg(h) = o) (s1n2p7r—2— + sin? qwa) ) (6.94)

we can easily prove that the solution of (6.92), (6.93) is given by
¥;5(t) = sinprihsingmjh cos ( Apg(P)(T — t)) , 0<4,5<TI+1. (6.95)
Next, we use (6.83) (see Section 6.8.4.3) to compute, from (6.95), the ap-

proximation of 9vy/0n at the boundary point My; = {0, jh}, with1 < j < I;
thus at time ¢, 0p/0n is approximated at My; by

Sn(Moj, t) = —% sin prh singrjh cos <\/)\pq(h)(T - t)) . (6.96)
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Fig. 48. Variations of f°(z;,.5) (——) and fO(z1,.5) (------ ) (h=1/32).

If 1 < p < I, the coefficient Kj(p) defined by

sinpmh
Kn(p) = =7 (6.97)

is an approximation of pr which is second-order accurate (with respect to
h); now if p ~ I/2 we have Ky(p) ~ I and if p = I we have (since h =
/(I + D)Kn(D) ~ 7.

Back to the continuous problem, it is quite clear that (6.92), (6.93) is in
fact a semi-discrete approximation of the wave problem

Y — AP =0inQ, P =0onX, (6.98);

Y(z,T) = sinprzy singrza, Yi(z,T) =0. (6.98)2
The solution of (6.98) is given by
Y(zx,t) = sinprz sin gmzy cos (m/p2 +q*(T — t)) . (6.99)

Computing (9v¢/0n)|x we obtain

oY . .
—6—n(M0j, t) = —pnsingmjh cos (m/p2 + ¢*(T — t)) . (6.100)

We observe that if p < I and g < I, then (8v/0n)(My;,t) and 64, (Moj, t)
are close quantities. Now, if the wavenumber p is large, then the coefficient
K(p) = mp in (6.100) is much larger than the corresponding coefficient Kx(p)
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Fig. 49. Variations of f!(z1,.5) (—) and f}(z1,.5) (----- ) (h=1/32).

in (6.97); we have, in fact,

K(I/2) 7 K

— - ~> =

Kn(I/2) 27 Kn(I)

~ .

Figure 52, (where we have visualized, with an appropriate scaling, the
function pr — pr and its discrete analogue, namely the function pr —
sinprh/h) shows that for p,q > (I +1)/2, the approximate normal deriva-
tive operator introduces a very strong damping. We would have obtained
similar results by considering, instead of (6.93), initial conditions such as

=0, fi=wp (6.101)

From the above analysis it appears that the approximation of (9vy/dn)ls,
which is used to construct operator A2, introduces very strong damping of
the large wavenumber components of fi,. Possible cures for the ill-posedness
of the discrete problem have been discussed in Glowinski et al. (1990), Dean
et al. (1989), Glowinski (1992a). The first reference, in particular, contains
a detailed discussion of a biharmonic Tychonoff regularization procedure,
where problem (6.50) is approximated by a discrete version of

1
eMIf, + Af, :( Zﬁ > in Q, (6.102);
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Af=fl=fi=0onT,
where, in (6.102), € > 0, f. = {f2, f!}, and where operator M is defined by

M = (%2 _OA). (6.102),

Various theoretical and numerical issues associated with (6.102) are dis-
cussed in Glowinski et al. (1990), including the choice of ¢ as a function of A;
indeed elementary boundary layer considerations show that € has to be of the
order of h2. The numerical results presented in Glowinski et al. (1990) and
Dean et al. (1989) validate convincingly the above regularization approach.
Also in Glowinski et al. (1990, p. 42) we suggest that mired FE approx-
imations (see, e.g. Roberts and Thomas (1991), Brezzi and Fortin (1991)
for introductions to mixed FE methods) may improve the quality of the
numerical results; one of the reasons for this potential improvement is that
mixed FE methods are known to provide accurate approximations of deriva-
tives and also that derivative values at selected nodes (including boundary
ones) are natural degrees of freedom for these approximations. As shown
in Glowinski, Kinton and Wheeler (1989) and Dupont, Glowinski, Kinton
and Wheeler (1992) this approach substantially reduces the unwanted oscil-
lations, since without any regularization good numerical results have been
obtained using mixed FE implementation of HUM. The main drawback of
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the mixed FE approach is that (without regularization) the number of conju-
gate gradient iterations necessary to achieve convergence increases (slowly)
with h (in fact, roughly, as h=1/2); it seems, also, on the basis of numerical
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Fig. 53. Triangles of 7;, and 7}, ;.

experiments, that the level of unwanted oscillations increases (slowly, again)
with 7.

Another cure for spurious oscillations has been introduced in Glowinski
and Li (1990) (see also Glowkinski (1992a, Section 3)); this (simple) cure,
suggested by Figure 52, consists of eliminating the short-wavelength compo-
nents of fj, with wavenumbers p and q larger than (I + 1)/2; to achieve this
radical filtering it suffices to define f;, on an FD grid of step size > 2h. An
FE implementation of the above filtering technique is discussed in Section
6.8.7; also, for the calculations described in Section 6.9 we have defined fj
over a grid of step size 2h.

6.8.7. An FE implementation of the filtering technique of Section 6.8.6
6.8.7.1. Generalities. We go back to the case where (possibly) Q # (0,1)2,
I'p # T and A # —A; the most natural fashion of combining HUM and the
filtering technique discussed in Section 6.8.6 is to use finite elements for the
space approximation; in fact, as shown in Glowinski et al. (1990, Section
6.2), special triangulations (like the one shown in Figure 1 of Section 2.6.1)
will give back FD approximations closely related to the one discusseéd in
Section 6.8.6. For simplicity, we suppose that () is a polygonal domain of
R?; we then introduce a triangulation 7} of Q2 such that Q = Urez, T with
h the length of the largest edge (s) of 7. From 7y, we define 7,/ by joining
(see Figure 53), the midpoints of the edges of the triangles of 7.

With P; the space of the polynomials in two variables of degree < 1, we
define the spaces H} and H}, by

H} ={v|e C*(Q),vlr € PLVT € T}, Hy, ={v|veH} vlr =0},
(6.103)
similarly, we define H} /o and H}, /2 by replacing h by h/2 in (6.103). We
observe that H} C Hé/z, H}, C H&h/? We then approximate the L2(Q)-
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scalar product over H ,& by
1
vwhh == > wour(Qw(Q), Yv,w € Hj, (6.104)
3 Q
Q

where, in (6.104), @ describes the set of the vertices of 7;, and where wq is
the area of the polygonal domain, union of those triangles of 73, with Q as
a common vertex. Similarly, we define (:,-),/o by substituting ~/2 to h in
(6.104).

Finally, assuming that the points at the interface of I'g and I'\T'y are
vertices of 79, we define V9 by

Vonsz = {v | v € Hij, v="0o0n [p\I'}. (6.105)

6.8.7.2. Approximation of problem (6.50). We approximate the fundamen-
tal equation Af = {—z!, 2%} by the following linear variational problem in
th X H&h:
fAt e HY, x HY,,
AR (Fy,v) = —(21,00) —+—/ Dotde, Vv = {00} € HY, x HY,.
Q
(6.106)

In (6.106), (-,-) denotes the duality pairing between H~1(Q) and H}((),
and the bilinear form AD(.,-) is defined as follows.

(i) Take f = (7% f}} € H}, x H}, and solve, for n = N,...,0, the
discrete variational problem
‘n-1 1
wl}n—le }{07}:4/—21’ n 2 (In 1 (6107)
(wh + ¢h - 2¢h’v)h/2 + | At a(wh’v) =0, Vve HOh/2’

with the final conditions
Uh =R dR T R = 24t (6.108)
we recall that a(-,-) denotes the bilinear form defined by
a(v,w) = (Av,w), Yo € HY(R), w € H(Q).
(ii) To approximate 9v/0n 4 over Xy, first introduce the complementary

subspace My, /o of Héh /2 defined by

Myo © Hgy o = Von2: (6.109)
v € Myjp = v|lp =0, VT € Tp,» such that TNT =

we observe that M}, is isomorphic to the space ¥Vyy 2 of the traces over

I of the functions of V5. The approximation of (89/0n4)|r, at t = nAt
is then defined (cf. Glowinski et al. (1990) and Section 2.4.3) by solving the
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linear variational problem

{ 61&’? € 7%)1./27

/ §7vdD = a(Yf,v), Yo € My,
T'o

(6.110)

Variants of (6.110), leading to linear systems with diagonal matrices are
given in Glowinski et al. (1990).
(iii) Now, for n =0, ..., N; solve the discrete variational problem

Gh L Vi = 00 on T L (61
(PR + @ — 285, v)ns2 + |Ata(Py,v) = 0, Vv € Hy,
initialized via
¢h =0, ¢h—¢p' =0 (6.112)

(iv) Finally, define A2%(-,-) by
)‘ﬁt(fh’v) = (j‘g’vo)h/2 + (5\,11,1)1)}1/2, Vv = {UO’,Ul} € H(%h X H(}ha (6113)
where, in (6.113), A9 and A} both belong to H}, /o and satisfy

SN+1 AN-1
50 P (P)—¢n (P)

AL(P) = @¥(P), VP interior vertex of Th/2- (6.114)

Following Glowinski et al. (1990, Section 6) we can prove that

N

Aot (fin, fan) = At Y an/r 515,695, AT, ¥ fin, fon € Hgp, X Hgp, (6.115)
n=0 Y

where, in (6.115), ag =any =1/2, and a, =1if 0 <n < N.

It follows from (6.115) that the bilinear form A2%(-,) is symmetric and
positive semi-definite. As in Glowinski et al. (1990, Section 6.2), we should
prove that A2(-,-) is positive definite if T is sufficiently large and if Q is
a square (or a rectangle) and 7, 75/ regular triangulations of Q2. From
the properties of /\hAt(-, -) the linear variational problem (6.106) (which ap-
proximates problem (6.50)) can be solved by a conjugate gradient algorithm
operating in Hg, x H},. This algorithm is described in Section 6.8.7.3.

6.8.7.3. Conjugate gradient solution of the approximate problem (6.106).
The conjugate gradient algorithm for solving problem (6.106) is an FE im-
plementation of algorithm (6.58)—(6.73) (see Section 6.8.3).

Description of the Conjugate Gradient Algorithm
Step 0: Initialization
1 e HY,, fie Hy, are given; (6.116)
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solve then, for n= N,N —1,...,0, the discrete linear variational problem

—1
Wo ' € Hyy o,

n—1 n+1 n 6.117
—2 (6.117)
Yo+ % 5 %,v + a(¥g,v) =0, VveHéh/Q,
A )
/2
initialized by
WY = £9, iVt — gl =2A¢fl, (6.118)

and store 7,[)8, wo_l.
Then for n = 0,1,...,N, compute ¥§, 6¥7, 306‘“ by forward (discrete)
time integration, as follows.

1 Ifn=0, compute 633 from 1§ using (6.110).
If n > 0, compute first Y§ by solving

Uf € Hyp o,

<¢3 + 5 — 2057

n—1 1
5 ,v) +a(g™ " v) =0, Yu € Hyypy
|At| b2
(6.119)

and then 6yg by using (6.110).
2 Take pf = 6yg on Iy and use

oot +of =207
|At?

,v) +a(pg,v) =0, Vv € H(}h/z, (6.120)
h/2

to compute the values taken by oit1(€ Vyy /2) at the interior vertices
of T jo. These calculations are initialized by

Po(P) = 0,04(P) — 5 (P) =0, VP interior vertex of Tp/o. (6.121)

Compute then go = {g3,98} € Hi, x H}, by solving the following
discrete Dirichlet problem

96 € Hpp,
S0N+1 _ (pN~1
/Vgg-Vvdwz(zl,v)— 070y , Yv € Hp,
0 2At
h/2
(6.122)
and then
90 € Hyyp,, 03
(gé’v)h = ((P(J)V’v)h/Q - / ZOU d.T, Vv € Héh (61 )
Q

If go = 0, or is ‘small’, take £~ = fy; if not, set
Wo = £0- (6.124)
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Then for k > 0, assuming that £, g, Wi are known, compute fy11, r+1,
Wi+1 as follows.

Step 1: Descent
Forn=N,N—-1,...,0, solve the discrete backward wave equation

Tn—1 1
k€ Hopo

Pl gl ogn ~ (6.125)
< k lAkt]Q kv e +a(yp,v) =0, Vv € H&h/%
initialized by
PF =wp, Yp T — it = 2Atwy, (6.126)

and store 1/_12, 1/7,:1
Then for n =0,1,...,N, compute Yy, 6y, @ZH by forward time inte-
gration as follows.

1 Ifn=0, compute 549 from WY using (6.110).
If n > 0, compute first Y} by solving

vk € Hyy o,
,J}n + ,&n—z . 2,1/;1'1,—1 .
( : I|CAt|2 e h/2 To(¥iTv) =0, Ve Héh/2’
(6.127)

and then 6y7 by using (6.110).

2 Take ¢% = §¢7 on T'g and use
Pi e
(s

— 29511: —=n _ 1
,U +a(@k,v) =0, Vv € Hypjp, (6.128)
h/2
to compute the values taken by @Rt (e Voy, /2) at the interior vertices
of Ty3. These calculations are initialized by
Gr(P) — @ 1(P) = @p(P) = 0, VP interior vertex of Typ-  (6.129)
Compute now gi(= {9, 9t}) € H}, x HY, by

~0 1
gk € Hpp,
N+1 _ -N—1

/Vgg-Vvdx=— P % o) weny, (6130
Q 2At b2

~1 1
g € HOh’
{ (gI}n’U)h = (@gj,v)h/% Yv € ‘/Oh, (6131)
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and then pg by

Pk =/Q|V9212dx+(gi,gi)h//QVg2-ngda:+(g,§,w,§)h. (6.132)
Once py, is known, compute

fir1 = i — pewy, (6.133)

gk+1 = Bk — PkBk- (6.134)

Step 2. Test of the convergence and construction of the new descent di-
rection
If g1 =0, oris ‘small’, take tht = fr11; if not, compute

Tk = /;2 IV ghs1l?dz + (911c+1a911c+1)h//n 022 dx + (g}, 9b)n,  (6.135)

and set
Whtl = Gkt1 T YWk (6.136)
Do k=k+1 and go to (6.125).

Remark 6.18 The above algorithm may seem a little bit complicated at
first glance (21 statements); in fact, it is fairly easy to implement, since the
only nontrivial part of it is the solution (on the coarse grid) of the discrete
Dirichlet problems (6.122) and (6.130). An interesting feature of algorithm
(6.116)—(6.136) is that the forward integration of the discrete wave equations
(6.117) and (6.125) provides a very substantial computer memory saving.
To illustrate this claim, let us consider the case where @ = (0,1) x (0, 1),
To =0, T =22, h = 1/64, At = h/2v/2 = /2/256; we have then -
approximately — (512)? discretization points on ¥, therefore in that specific
case, using algorithm (6.116)~(6.136) avoids the storage of 2.62 x 10° real
numbers. The saving would be even more substantial for larger 7' and
would be an absolute necessity for three-dimensional problems. In fact, the
above storage-saving strategy which is based on the time reversibility of the
wave equation (6.1) cannot be applied to the control problems discussed in
Sections 1 and 2 since they concern systems modelled by diffusion equations
which are, unfortunately, time irreversible.

Remark 6.19 The above remark shows the interest of solving the dual
problem from a computational point of view. In the original control problem,
the unknown is the control u which is defined over X¢; for the dual problem
the unknown is then the solution f of problem (6.50). If one considers
again the particular case of Remark 6.18, i.e. Q@ = (0,1) x (0,1), Ty =T,
T = 2v/?2, h = 1/64, At = h/2v/2 the unknown u will be approximated
by a finite dimensional vector uﬁt with 2.62 x 10° components, while f is
approximated by tht of dimension 2 x (63)? = 7.938 x 103, a substantial
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saving indeed. Also, the dimension of tht remains the same as T increases,
while the dimension of u2 is proportional to 7.

Numerical results obtained using algorithm (6.116)—(6.136) will be dis-
cussed in Section 6.9.

6.8.8. Solution of the approximate boundary controllability problem (6.24)

Following the approach advocated for the exact boundary controllability
problem, we shall address the numerical solution of the approzimate bound-
ary controllability problem (6.24) via the solution of its dual problem, namely
problem (6.37), (6.38). This can also be formulated as

AE + 8j(f) = ( ‘Zﬁl ) , (6.137)

where, in (6.137), the convez functional j : H}(Q) x L*(Q) — R is defined
by

(€)= Bl Fll gy ey +Boll Ml 2y, VE = {£°, f'} € HJ(Q)x L*(2). (6.138)

Following a strategy already used in preceding sections (see, e.g. Section
1.8.8) we associate with the ‘elliptic’ problem (6.137) the following initial
value problem

f((;?A_ fog > B 1230 (;31) ’ (6.139)

where 7 is a pseudo-time. The particular form of problem (6.139) clearly sug-
gests time integration by operator splitting (see, again, Section 1.8.8). Con-
centrating on the Peaceman—Rachford scheme, we obtain — with A7(> 0) a
pseudo-time step — the following algorithm to compute the steady-state so-
lution of problem (6.139), i.e. the solution of problem (6.37), (6.38), (6.137):

0 = fy; (6.140)

then, for k > 0, assuming that £¥ is known, we compute £¥t1/2 gnd fF+1
via the solution of

—A 0 fk+l/2_fk
( 0 I) AT/2

_ .1
+ AfF 4 §j(£FT1/2) =< Zﬁ ) (6.141)

~A 0 fk+1_fk+1/2
( 0 I) AT/2

Let us discuss the solution of the subproblems (6.141), (6.142):
(i) Assuming that (6.141) has been solved, equation (6.142) can be for-

!
+ AT 9(Fk /2y = Z‘f, ) (6.142)
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mulated as
~A 0 fk+1_2fk+1/2+fk 1 .
= Af
(0 I) Ar/2 AP = AL
i.e.
~A 0\ py1 AT 1 _ (A O k+1/2  oky , DT ok
(0 I)f +5rAs = (TR D r £4)+ SEALE. (6.143)

Problem (6.143) is a variant of problem (6.50) (a regularized one, in fact) and
can be solved by a conjugate gradient algorithm closely related to algorithm
(6.58)—(6.73) (we have to replace the bilinear form

{f1,£2} — (Afy, ) : (H3(Q) x L2 Q)2 - R
by
(ft} — [ VR Vidat [ flfidor JAr(AG,8)

(ii) Concerning the solution of problem (6.141), we shall take advantage of
the fact that operator d5(-) is diagonal from H}(Q) x L%(Q) into H~1(2) x
L?(9); solving problem (6.141) is then equivalent to solving the two following
uncoupled minimization problems (where the notation is fairly obvious):

i e
min 1/ |Vf°|2dx+ﬂ1-A—T</ |Vf0|2d:r)
2 Ja 2 Q

foeH} (@)

LA 4 (A0, 7O —/Vfo’k~Vf0dm], (6.144)
2 Q

. 1 : AT - AT ;
Jmin |2 [P de I e - 5 [0~ (A do
fl cL? (Q) 2 Q 2 2 Q

~/Qf1»kf1 d:c}. (6.145)

Both problems (6.144), (6.145) have closed form solutions which can be
obtained as in Section 1.8.8 for the solution of problem (1.115). The solution
of problem (6.144) (respectively (6.145)) clearly provides the first (respec-

tively the second) component of f¥1t1/2 i.e. the one in H(Q) (respectively
in L2(2)).

6.9. Experimental validation of the filtering procedure of
Section 6.8.7 via the solution of the test problem of
Section 6.8.5

We consider in this section the solution of the test problem of Section 6.8.5.
The filtering technique discussed in Section 6.8.7 is applied with 7} a regular
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triangulation like the one shown on Figure 1 of Section 2.6; we recall that
7T}, is used to approximate tht, while ¥ and ¢ are approximated on 7,/ as
shown in Section 6.8.7. Instead of taking h to be equal to the length of the
largest edges of 7, it is convenient here to take h as the length of the edges
adjacent to the right angles of 7;,. The approximate problems (6.106) have
been solved by the conjugate gradient algorithm (6.116)—(6.136) of Section
6.8.7.3. This algorithm has been initialized with f§ = f} = 0 and we have
used

1ok o+ (ghigbn / [ V6B do+ (ghogbin <107 (6.146)

as the stopping criterion (for calculations on a CRAY X-MP).
Let us also mention that the functions 20, z!, u of the test problem in

Section 6.8.5, satisfy
12002y =12.92..., |lz'|lg-1@) =10.77..., ullr2z) = 7.386 68. ...

In the following we shall denote by || [lo., |- 1.0, || =10, || - llo,5 the L(£2),
HY(Q), HY(Q), L%(T) norms, respectively (here |v|10 = (o |Vv|? dz)!/?
and [v]|_10) = |w|,o where w € HJ(R) is the solution of the Dirichlet
problem - Aw =vin Q, w=0o0nT).

To approximate problem (6.50) by the discrete problem (6.106) we have
been using h = 1/4,1/8,1/16,1/32,1/64 and At = h/2v/2 (since the wave
equations are solved on a space/time grid of step size h/2 for the space
discretization and h/2+/2 for the time discretization); we recall that T =
15/4+/2.

Results of our numerical experiments have been summarized in Table 7.
In this table f2, fl, u. are defined as in Section 6.8.5, and the new quantities
20, 2} are the discrete analogues of y(T) and y;(T), where y is the solution
of (6.33)2, associated via (6.33)1, to the solution f of problem (6.50).

Remark 6.20 In Table 7 we have taken h/2 as discretization parameter
to make easier comparisons with the results of Table 6 and Glowinski et al.
(1990, Section 10).

Comparing the above results to those in Table 6, the following facts appear
quite clearly.

1 The filtering method described in Section 6.8.7 has been a very effective
cure to the ill-posedness of the approximate problem (6.88).

2  The number of conjugate gradient iterations necessary to achieve the
convergence is (for h sufficiently small) essentially independent of h; in
fact, if one realizes that for A = 1/64 the number of unknowns is 2 x
(63)% = 7938, converging in 12 iterations is a fairly good performance.

3 The target functions 2% and 2! have been reached within a fairly high
accuracy.



EXACT AND APPROXIMATE CONTROLLABILITY 281

Table 7. Table 2.1. Summary of numerical results. * indicates the number
of conjugate gradient iterations.

h/2
1 L L 1 _1
8 16 32 64 128
¢ 7 10 12 12 12
CPU time(s)
CRAY X-MP 0.1 0.6 2.8 14.8 83.9
0 t]
'{fﬂf“{ﬁa,’g"n 96x10~2 26x10-2 22x10~2 64x10~3 1.5x 10-3
L ofela 35x10°1 18x10! 9x102 44x10"2 2.2x 102
i
%ﬂ 1x10"1  26x1072 15x10"2 7x107% 32x 1073
Phe®  24x107 3x1070 6x107° 83x10° 66x 107"
le-zloia 69x1077 46x1077 04x107° 2x107°  85x 1070
e 12x107! 43x1072 2x102 7.6x10"3 3.4 x10-3
l[usllo,z 7.271 7.386 7.453 7.405 7.381

The results of Table 6 compare favourably with those displayed in Ta-
bles 10.3 and 10.4 of Glowinski et al. (1990, pp. 58, 59) which were obtained
using the Tychonoff regularization procedure briefly recalled in Section 6.8.6;
in fact, fewer iterations are needed here, implying a smaller CPU time (actu-
ally the CPU time seems to be a sublinear function of h~3 which is — modulo
a multiplicative constant — the number of points of the space/time discretiza-
tion grid). Table 7 also shows that the approximation errors (roughly) satisfy

170 = fllca) = 0R%), 1% = fllayy = 0(h),  If! = filla(e) = O(R),
(6.147)

llu — e L2¢y = O(R). (6.148)

Estimates (6.147) are of optimal order with respect to h in the sense that
they have the order that we can expect when one approximates the solution
of a boundary value problem, for a second-order elliptic operator, by piece-
wise linear FE approximations; this result is not surprising since (from Sec-
tion 6.8.2, relation (6.54)) the operator A associated with Q = (0,1) x (0,1)
behaves for T' sufficiently large like

2T ( _OA (}) (6.149)

(we have here zp = {1/2,1/2} and C = }).
In order to visualize the influence of h we have plotted for h = 1/4,
1/8, 1/16, 1/32, 1/64 and At = h/2v/2 the exact solutions f°, f! and
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Fig. 54. (h = 1/4, At = h/2v/2). (a) Variation of f%(z1,1/2) (——) and
oz, 1/2) (oo ); (b) Variation of —f'(x1,1/2) (——) and —f}(z1,1/2)

Fig. 55. (h = 1/8, At = h/2v/2). (a) Variation of f%(z1,1/2) (

) and
o x,1/2) (oones ). (b) Variation of —f(z1,1/2) (——) and —f}(x1,1/2)

the corresponding computed solutions f0, f. To be more precise, we have
shown the plots of the functions z; — f0(z1,1/2), 1 — —f1(x1,1/2) (full
curves) and of the corresponding computed functions (dotted curves). These
results have been reported in Figures 54 to 58 and the captions there are
self-explanatory.
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Fig. 56. (h = 1/16, At = h/2v/2). (a) Variation of f0(z1,1/2) (
foz1,1/2) (oo - ). (b) Variation of —f1(z;,1/2) (
(oeeee ).

) and
) and —f;(z1,1/2)

(a) x1 (b) X,

Fig. 57. (h = 1/32, At = h/2v/2). (a) Variation of f(x;,1/2) (

) and
foz1,1/2) (- ). (b) Variation of —f(z1,1/2) (

) and —fl(z1,1/2)

The above numerical experiments have been done with T = 15/4v/2; in
order to study the influence of T we have kept 2° and 2! as in the above
experiments and taken T = 28.2843. For h = 1/64 and At = h/2V/2 we
need just 10 iterations of algorithm (6.116)—(6.136) to achieve convergence,
the corresponding CRAY X-MP CPU time being then 800s (!) (the number
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1.50 5.00

(a) (b) X

Fig. 58. (h = 1/64, At = h/2v/2). (a) Variation of f%(z;,1/2) (——) and
f?($1v1/2) ( """ ) (b) Variation of _f1($1,1/2) (_) and —f}($1v1/2)
( .

of grid points for the space/time discretization is now ~ 86 x 10%). We have
llwell 22y = 2-32, [12° — 22|| f2() = 5.8 x 1076, ||z! — 2|10 = 1.6 x 107°.
The most interesting results are the ones reported on Figures 59(a) and
(b). There, we have compared Tf? and Tf! (for T = 28.2843) with the
corresponding theoretical limits x° and x! which, according to Section 6.8.2,
relations (6.55)—(6.57), are given by

Ax’=21/2inQ, x°=0onT, (6.150)

x! =2%/2. (6.151)

The full curves represent the variations of z; — x%(z1,1/2) and of z; —
~x(x1,1/2), while the dotted curves represent the variations of z; —
T£%z1,1/2) and x; — —Tf1(x1,1/2).

In our opinion the above figures provide an excellent numerical verifica-
tion of the convergence result (6.55) of Section 6.8.2 (we observe at z; =0
and z; = 1 a (numerical) Gibbs phenomenon associated with the L? con-
vergence of T fl to x!). Conversely, these results provide a validation of the
numerical methodology discussed here; they show that this methodology is
particularly robust, accurate, nondissipative and perfectly able to handle
very long time intervals [0,7]. In fact, numerical experiments have shown
that the above-mentioned qualities of the numerical methods discussed here
persist for target functions z° and z! much rougher than those considered
in this section.

Additional results can be found in Glowinski et al. (1990, Section 4).
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Fig. 59. (h = 1/64, At = h/2v/2, T = 28.2843). (a) Variation of x°(z1,1/2)
(—) and Tf%(zy,1/2) (-+---- ). (b) Variation of —x!(z1,1/2) (——) and

~Tfi(x1,1/2) (- )-
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6.10. Other boundary controls

6.10.1. Approzimate Neumann boundary controllability

We consider now problems entirely similar to the previous ones but where
we ‘exchange’ the Dirichlet conditions for Neumann conditions.

We therefore define the state function y = y(v) by

e+ Ay =01in Q = Q x (0,T), (6.152)1
y(0) =0, 4(0)=0, (6.152)9

8 8

% = v on Ty = Lo x (0,T), 51% =0 on \Z. (6.152)3

To fix ideas, we still assume that
v € LA(Zp). (6.153)

Using again transposition, we can show that problem (6.152) has a unique
(weak) solution if (6.153) holds. In fact, the solution here is (slightly)
smoother than the one in Section 6.1. We can, in any case, define an operator
L from L?(Xg) into H~1(Q) x L3(Q) by

Lv = {~y(T;v),y(T;v)}- (6.154)

If v is smooth, the solution y(v) will also be smooth, assuming of course
that the coefficients of A are also smooth.

Let us study approzimate controllability first.
We suppose that v is smooth; indeed, to fix ideas we assume that

v, 5 € L3(Zg), vl =0. (6.155)

Then, y(v) can be defined by a variational formulation, showing that

y is continuous from [0, T)] into H'(), (6.156)
y; is continuous from [0, 7] into L2(Q). '
Then in particular
Lv € L*(R) x L%(Q). (6.157)

Let us consider now f belonging to the orthogonal of the range of L, i.e.
f={f°f'} e L*(Q) x L*Q),

(6.158)
—/Qfoyt(T) dx+/ﬂf1y(T) dz = 0, Vv satisfying (6.155).
We introduce 1 defined by
i+ AP =0in Q, o(T) = f°, ¢u(T) = f* X _oonT.  (6.159)

" Ona
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Multiplying the wave equation in (6.159) by y = y(v) and integrating by
parts, we obtain

(Lv,f) == | yvdX, (6.160)

Therefore (6.158) is equivalent to
¥ = 0 on . (6.161)
If we assume (as in Section 6.3, relation (6.22)) that
Yo allows the application of the Holmgren’s uniqueness theorem (6.162)

then (6.159), (6.161) imply that ¢ = 0 in @, so that f = 0; we have proved
thus that

assuming (6.162) the range of L is dense in L2(Q) x L%(), (6.163)
which implies, in turn, approzimate controllability.
Remark 6.20 Suppose that I' is a C°° manifold. Then we can take

v € D(Xp) (the space of the C* functions with compact support in ),
(6.164)
and the range of L, for v describing D(Xo), is still dense in L2(Q) x L?(Q).

We can now state the following control problem

1

irvlf 3 v2dE;y(T) € 2° + BoB, u(T) € 2! + 1B, (6.165)
Lo

where, in (6.165), {y, v} satisfies (6.152), (6.153), {20, 2} € L2(Q2) x L?(Q),

and where B denotes the closed unit ball of L?(2).

Remark 6.21 We do not introduce H~1(f2) here for two reasons:

1  in the present context the H~!(Q) space (which is not the dual of
H'(Q)) is not natural;

2 the choice of the same norm, in (6.165), for both y(7T') and y:(T) shows
the flexibility of the methodology.

Remark 6.22 Problem (6.165) has a unique solution. Uniqueness follows
from the strict converity. As far as existence is concerned let {up}n>o be
a minimizing sequence. Then {un}n>o is bounded in L?(Zg). Let us set
Yn = yY(un). By definition, {{yn(T), Oyn/0t(T)}}n>0 remains in a bounded
set of L2(Q) x L2(2). We can therefore extract from {uy, }n>0 a subsequence,
still denoted by {un}n>0, such that

u, — u weakly in L%(Zo), (6.166)

{yn(T), %/{i(T)} — {&0, &1} weakly in L*(Q) x L*(Q). (6.167)
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However,
{y(T5un), ye(Tun)} — {y(T;u), yo(T5u)}

weakly in L2(2) x H~1(Q), so that & = y(T;u),& = y:(T;u), which proves
the existence of a solution namely u to problem (6.165).

The uniqueness of the solution implies that the whole minimizing sequence
converges to u.

Remark 6.23 The use of Gy and 31 > 0 allows the introduction of new (and
complicated) function spaces to be avoided. Unfortunately, these spaces
cannot be avoided if we let §y and 3; — 0, as we shall see below.

6.10.2. Duality results: exact Neumann boundary controllability

Now, we use duality, as in previous sections. We then introduce function-
als F1 and F5 by

Fi(v) = LAy dx, (6.168)
2 Jsy
Fy) =1 0 if fe—-2'+/B flez’+ BB, (6.169)
400 otherwise on L2(Q2) x L2(Q). '

It follows then from (6.154) that problem (6.165) is equivalent to

Bt () + Fa(Lv)] (6.170)

Using convex duality arguments, we obtain

inf [Fl( )+ F(lv) =—  inf  [FyL) + F3(-f)], (6.171)
veL?(E feL2()xL2(Q)

where we use L* with L thought of as an unbounded operator.
By virtue of (6.171), we have

L = —d|s,, (6.172)

where 1) is the solution of (6.159) when f replaces f.
We obtain then as dual problem of the control problem (6.165)

~ inf [
ferz)xr2(@) L2 /5o

+B11| fOll 2y + ﬂ0||f1||L2(Q)]- (6.173)

¢2d2+/ (2 fo — 22 dz

Remark 6.23 We shall give an alternative formulation of the dual problem
(6.173). This new formulation is particularly useful when {Go,51} — O.
Using the HUM approach, we introduce the operator A defined as follows.
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The functions fO and f! being given in, say, L2(Q2), we define ¢ and § by

Jut AY=0inQ, Y(T) =, () = 1, 2L =0on ¥, (6.174)
Ju+AG=0inQ, §(0)=4(0)=0, ==~ on T,
99 _ Oon X\X ’ (0479
ong 0:
We set then (with £ = {f°, f1}):
Af = {—4(T), 9(T)}. (6.176)

Taking f =f, and £, and denoting by 11, 12 the corresponding solutions of
(6.174) we obtain from (6.174), (6.175) that

/(Afl) . f2 dz = / wlt/lg dXx. (6177)
Q %o

It follows from (6.177) that
A is symmetric and positive semi-definite over L?(Q2) x L?(Q). (6.178)
It follows from (6.177) that problem (6.173) is equivalent to

1 N . . N
~inf [—/(Af)-fdm+/(z1f°—zofl)dx+ﬂ1||f0||L2(Q)
fer2@@)xr2@) L2 Ja Q

+,30”.f1||L2(Q)] : (6.179)

In order to discuss the case Sy = 1 = 0 in (6.179), we introduce over
L%(Q) x L?(Q) the norm |...] defined by

N i /2
] = ( / (AF) - fdx) | vE € I2(Q) x L2(Q). (6.180)
Q
We define next the space E by

E = completion of L2(Q) x L2(f) for the norm |[...]. (6.181)

Taking now the limit in (6.179) as {5o, 51} — 0 we obtain — formally — the
dual problem associated with ezact controllability, namely

14 A
inf [—[f]2 — (o2, f)] (6.182)
fer L2
where, in (6.182), (...,...) denotes the duality pairing between E’ and E,

0 -1
{0 1 -
z—{z,z}anda—(1 0).
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Problem (6.182) has a solution (necessarily unique) if and only if
{-21,2% e E/; (6.183)

equivalently, exact controllability is true if and only if condition (6.183) is
satisfied.

Remark 6.24 Contrary to the situation in Section 6.6, the space E, as
defined by (6.181), has no simple interpretation. For further information
concerning space E, we refer to Lions (1988b) and the references therein.

Remark 6.25 It is by now clear that the method followed here is general.
It can, in particular, be applied to other boundary conditions.

6.10.3. A second approxrimate Neumann boundary controllability problem

Inspired by Sections 1 and 2, we consider, for £ > 0, the following control
problem

1 k
min [_ / v dE + S (W(T) = 2llz2(@) + lwe(T) — 22|

veL2(Zo)
(6-184)
where, in (6.184), y is — still — defined from v via the wave equation (6.152);
problem (6.184) is obtained by penalization of the conditions y(T) = 2°,

y(T) = 2L

Using the results of Section 6.10.1 it is quite easy to show that problem
(6.184) has a (necessarily unique) solution (even if (6.162) does not hold).
If we denote by u the solution of problem (6.184), it is characterized by the
existence of an adjoint state function p such that

{ yg + Ay =0in Q, ay(O) = 4:(0) = 0, ( )
y By 6.185
o u on X, Bns 0 on X\,
. Op
pe+Ap=0inQ, —— =0on X, (6.186);
ong
p(T) = k(ye(T) — 2), pe(T) = —k(y(T) - 2°), (6.186)2
u = —p on Xg. (6.187)
Let us define £ = {0, f1} € L?(Q) x L3() by
fP=pT), f'=p(T); (6.188)

it follows then from (6.186)2, and from the definition of A (see Section 6.10.2)
that

k7 4+ Af = {21, 20). (6.189)
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Problem (6.189) is the dual problem of (6.184).

From the properties of A (symmetry and positivity) and from the (L2((2))?
ellipticity of the bilinear form associated with operator k~1I + A, problem
(6.189) can be solved by a conjugate gradient algorithm operating in L2(Q2) x
L?(9); such an algorithm will be described in Section 6.10.4.

6.10.4. Conjugate gradient solution of the dual problem (6.189)

We can solve problem (6.189) by the following variant of algorithm (6.58)—
(6.73) (see Section 6.8.3):

fo = {9, &} given in L2() x L2(Q); (6.190)
solve then
0?
82/210 +AYo=0in Q, Yo(T) = f&
IOy = g1 X0 _
ot (T) = fo, Bna Oon X,
6 : 9
6220 +App=0in Q, o(0)= %(0) =0,
dp 8 (6.192)
0 _ O%o _
% = '([10 on 20, on 0 on 2\20.

Define go = {99, 93} € L2(Q) x L2(Q) by

/govdx—k /fovda:+/( &po ))vda:, Vv € L2(Q), (6.193);

/ Gvde = k7 / flvudz + / (0o(T) = 2X)vdz, Yo € LXQ), (6.193);
Q Q Q
and define wo = {wd, wl} by

wWo = 80- (6.194)

Assuming that £, g,, W, are known, we obtain f,41, 8n+1, Wn+1 as follows.
Solve

627]% n : 7 0

12 + Awn =0in Qa ¢n(T) = Wnp,

57 53 (6.195)

OUn iy _ L n _

En (T) = wy, s 0on X,
8*@n _ : _ Ofn
W+Acpn=01n Q, ¢n(0)= (p (0)—0
85 85 (6.196)
.6_7; = —), on Lo, B =0 on L\X,.
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Define gn = {gn,3n} € L*(Q) x L*(Q) by

/Qggvdx = k‘l/nwgvda;—/aég—otﬁ(T)vdm, Yv € L3(Q), (6.197)1

/Q Gludz = k! /Q wlods + /Q on(T)odz, Yo € LX(Q).  (6.197)s
Compute
pn = /Q(lg?,l2 + |93L|2)dx//9(§2w2 +glwl)dz, (6.198)
and then
fot1 = fu — prwa, (6.199)
8n+1 = &n — Pnn- (6.200)

If llgn+1ll L2 2/ 8ol L2y x 12() < € take £ = f,11; if not compute

“gn+1”%2(Q)xL2(Q)
Tn =

(6.201)
l&nlZ20)x 220

and update wy, by
Wntl = Ent1 + YnWn- (6.202)
Do n=n+1 and go to (6.195).

Remark 6.26 The FE implementation of the above algorithm is just a
variation of the one of algorithm (6.58)—(6.73) (it is in fact simpler). In fact,
here too we can take advantage of the reversibility of the wave equations
to reduce the storage requirements of the discrete analogues of algorithm
(6.190)—(6.202).

Remark 6.27 In Glowinski and Li (1990), we can find a discussion of numer-
ical methods for solving exact Neumann boundary controllability problems;
the solution method is based on a combination of finite element approxi-
mations and of a conjugate gradient algorithm closely related to algorithm
(6.190)—(6.202). We also discuss, in the above reference, the asymptotic
behaviour of the solution f of the dual problem when T" — +o00; there too
the analytical results confirmed the numerical ones, validating therefore the
computational methodology.

6.10.5. Application to the solution of the dual problem (6.179)

Assuming that Gy and () are positive the dual problem (6.179) can also
be written as

Af +9j(f) = ( ‘zﬁl > , (6.203)
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where the functional j : L2(Q) x L?(Q) — R is defined by
i(E) = Bul PNz + Boll Ml z2y, VE = {f°, f'} € L3(@) x LA(Q). (6.204)

As in Section 6.8.8, we associate with (6.203) the following initial value

problem
ot e (2!
o A+ 0j(F) = ( = ) , (6.20)
£f(0) =f
to be discretized, for example, by the following Peaceman—-Rachford scheme:
£ = f; (6.206)
then for k > 0, assuming that £* is known, we compute £¥t1/2 and f5+1 via
gE+1/2 _ gk . !
(ph+1/2y ( ) _
Fr+1 Fh+1/2 kb1 - ek41/2 1 .
“——ATT +Af + 0j(f )= ( 20 ) . (6.208)

Problem (6.207) is fairly easy to solve (see Section 6.8.8) since the operator
0j(...) is diagonal. On the other hand, once fk+1/2 is known, problem
(6.208) is just a particular case of problem (6.189) (with k = A7/2); it can
be solved therefore by the conjugate gradient algorithm (6.190)—(6.202).

6.11. Distributed controls for wave equations

Let us consider O C Q and let the state equation be

yt +Ay=vxoin @, y(0)=4(0)=0, y=0onZX. (6.209)
We choose
v € L0 x (0,T)). (6.210)
The solution of problem (11.1) is unique. It satisfies )
{y,u} is continuous from [0,T] into H(R) x L?(Q). (6.211)

Let us see when
{y(T), y:(T)} spans a dense subset of H}(Q) x L?(Q). (6.212)
We consider f = {f°, f1} € L2(Q) x H7}(£2) such that
- [0 dz+ (fy(T) =0, e IXO x O,T)),  (6:213)
Q

where, in (6.213), (-,-) denotes the duality pairing between H~!(Q2) and
HA(Q).
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We introduce 1 solution of

Y+ AY=0inQ, Y(T) =1 Y(T)=f, v=00n%.  (6.214)
Then

- / we(T) f0dz + (1, y(T)) = / b dz dt. (6.215)
0 Ox(0,T)

Therefore (6.213) is equivalent to
Y =00n O x (0,T). (6.216)

We shall assume that we can apply Holmgren’s uniqueness theorem to O x
(0,T); then 9 =0 and f = 0, so that (6.212) holds true.
We can then consider

1
inf = // v2dax dt; y(T;v) € 2% + BoBy, y:(T;v) € 21 + 1B (6.217)
v 2J Jox(oT)

where, in (6.217), y(v) is obtained from v via (6.209), {20, 2!} is given
in H}(Q) x L?(Q), B; (respectively B) is the closed unit ball of H}()
(respectively L?(Q)).

Similar considerations to everything which has been said in the previous
sections can be adapted to the present situation, from either the purely math-
ematical point of view (see Lions (1988b)) or the numerical point of view.

Remark 6.28 One can also consider pointwise control, as in

+ Ay = v(t)6(z — b) in Q,
{ Zt(to) = Zt(o) =0, y=0onX (to fix ideas). (6.218)

Control problems for systems modelled by (6.218) have been discussed in
Lions (1988b, Volume 1, Chapter 7). Interesting phenomena appear con-
cerning the role of b € (2. Methods from harmonic analysis have been used
in this respect by Meyer (1989) and further developed by Haraux and Jaffard
(1991), I. Jo6 (1991).

6.12. Dynamic Programming

We are going to apply Dynamic Programming to the situations described
in Section 6.11. The approach is formal, somewhat similar to the one in
Section 5.

Remark 6.29. We could have applied dynamic programming to the situ-
ations described in Sections 6.1 or 6.10, but the situation is simpler for the
control problems described in Section 6.11.

We consider for s given in (0,7

{ Y + Ay = vxo in Q x (s,T),

y(s) = hO, yt(S) = h17 Yy = 0 on 23 =T x (S,T), (6219)
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with {ho,hl} € H&(Q) X Lz(Q).
We introduce

$(h0, k', 5) = in / / v? dz dt (6.220)
v Ox(s,T)
where, in (6.220), v is such that {y(v), v} satisfies (6.219) and
y(T;v) € 2° + BoB1, w(T;v) € 2 + B1B. (6.221)

The quantity ¢(h°, k!, s) is finite for every
L e Hy(Q), 2 e L*(Q), Bo>0, f1>0

if and only if the Holmgren’s unigqueness theorem applies for O x (s,T) in
QO x (s,T). This is true for s < sg, sg a suitable number in (0,T). In that
case, the infimum in (6.221) is finite for s < sg, implying that the function
¢ is defined over H}(Q) x L%(2) x (0, sp).

Let us write now the Hamilton—Jacobi-Bellmann (HJB) equation; we take
v(z,t) = w(z) in O x (s,s +¢€). (6.222)

With this choice of v, {y(t),y:(t)} ‘moves’ during the time interval (s, s+¢)
from {h%, A} to

{h® 4+ ehl, h! + ewyxp — AR’} + 0(?

(assuming that h® € H(Q) N H%(Q)). Then, according to the optimality
principle, we have

B(RO,hls) = inf E /Ow2 dz + $(h® + e, B! + swxo
—cAR® s + E)] + 0(e?). (6.223)

Expanding ¢ we obtain

ae + o) - (G 47) .o (3 Lo+ (a1 o)
65+(8h0’h) anr ) + o) (2 Jo v 40+ (a0 )| =0

(6.224)
This is the HJB equation. We have the ‘final’ condition
0 pl 0if {n° Al} € E,
Pk s 0) = { 400 otherwise (6.225)

where E is the set described by y(so; v), %¢(so; v) when y satisfies yy; + Ay =
vxo in Q x (s, T), v € L*(O x (s0,T)) y = 0 on T x (s9,T), and (6.221)
holds true. This definition is not constructive. See Remark 6.31 below.

Remark 6.30 We emphasize once more that the above approach is fairly
formal.
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Remark 6.31 The real time optimal policy is given at time ¢ € (0, sg) by

__9¢

u(t) = i (%, hY, t)xo. (6.226)

How to proceed for t € (so,T) seems to be an open question, even from a
conceptual point of view.

6.13. On the application of controllability methods to the
solution of the Helmholtz equation at large wave
numbers

6.13.1. Introduction

Stealth technologies have enjoyed a considerable growth of interest during
this last decade both for aircraft and space applications. Due to the very
high frequencies used by modern radars the computation of the Radar Cross
Section (RCS) of a full aircraft using the Mazwell equations is still a great
challenge (see Talflove (1992)). From the fact that boundary integral methods
are not well suited to general coated materials, field approaches seem to
provide an alternative which is worth exploring.

In this section, we consider a particular application of controllability meth-
ods to the solution of the Helmholtz equations obtained when looking for
the monochromatic solutions of linear wave problems. The idea here is to
go back to the original wave equation and to apply techniques, inspired by
controllability, which find its time periodic solutions. Indeed, this method
(introduced in Bristeau, Glowinski and Périaux (1993a,b)) is in competition
with — and is related to — the one in which the wave equation is integrated
from 0 to 400 in order to obtain asymptotically a time periodic solution;
it is well known from Lax and Phillips (1989) that if the scattering body
is convex then the solution will converge exponentially to the periodic solu-
tion. On the other hand, for non-convez reflectors (which is quite a common
situation) the convergence can be very slow; the method described in this
section substantially improves the speed of convergence of the asymptotic
one, particularly for stiff problems where internal rays can be trapped by
successive reflections.

6.13.2. The Helmholtz equation and its equivalent wave problem

Let us consider a scattering body B, of boundary 0B = =, ‘illuminated’
by an incident monochromatic wave of frequency f = k/2n (see Figure 60).

In the case of the wave equation uy —Au = 0 with a periodic solution u =
Re (U e“‘kt), the associated Helmholtz equation, satisfied by the coefficient
U(z) of e ¢ is given by

AU +¥*U =0in RY\B(d = 2,3), (6.227)
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v

Fig. 60. u; is the incident field.

U=G on~. (6.228)

In practice, we bound R%\B by an artificial boundary T on which we pre-
scribe, for example, an approrimate first-order Sommerfeld condition such
as

ou
o " ikU =0onT; (6.229)

now, equation (6.227) is prescribed on §2 only, where (2 is this portion of
Rd\B between v and T". In the above equations, U is the scattered field, —G
is the incident field, U and G are complex valued functions.

Remark 6.32 More complicated (and efficient) absorbing conditions than
(6.229) have been coupled to the controllability method described hereafter;
they allow the use of smaller computational domains. The resulting method-
ology will be described in a forthcoming publication.

Systems (6.227)—(6.229) is related to the T-periodic solutions (T = 27 /k)
of the following wave equation and associated boundary conditions

uy —Au=0in Q(=Q x (0,T)), (6.230)
u=gono(=~vx(0,T)), (6.231)
% + % =0on3(=T x (0,T)), (6.232)

where, in (6.231), g(z, ) is a time periodic function related to G by g(z,t) =
Re (e *'G(z)). If we denote

G(z) = Gi(z) 4+ iGim(z),

g satisfies
g(z,t) = Gi(z) coskt + Gim(x) sin kt.
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The goal, here, is to find periodic solutions to system (6.230)—(6.232) without
solving the Helmholtz problem (6.227)-(6.229).

In the following, we look for T-periodic solutions to systems such as
(6.230)—(6.232); this means solutions satisfying

u(0) = u(T), u(0) = we(T). (6.233)
These solutions can be written
u(z,t) = Re (e U (z))

(or u(z,t) = Uy coskt + Uiy sin kt) where U = U; + iUy, is the solution of
(6.227)—(6.228); so we have

u(0) = Uy, u¢(0) = kUim.

6.13.3. Exact controllability methods for the calculation of time periodic so-
lutions to the wave equation

In order to solve problem (6.230)—-(6.233) we advocate the following ap-
proach whose main merit is to reduce the above problem to an exact control-
lability one, close to those problems whose solution is discussed in Sections
6.1 to 6.12. Indeed, problem (6.230)—(6.233) is clearly equivalent to the
following one:

Find e = {e°,e'} such that

Ut — Au=0in Q, (6234)
u =g ono, (6.235)
ou Ou
5. T =0T (6.236)
u(0) =€, u(0) =el, u(T) =€ w(T)=e. (6.237)

Problem (6.234)—(6.237) is an ezact controllability problem which can be
solved by methods directly inspired by those in Sections 6.1 to 6.10. We
shall not address here the eristence and uniqueness of solutions to problem
(6.234)—(6.237) (these issues are addressed in Bardos and Rauch (1994));
instead we shall focus on the practical calculation of such solutions, assuming
they do exist.

6.13.4. Least-squares formulation of the problem (6.234)-(6.237)

In order to be able to apply controllability methods to the solution of
problem (6.234)—(6.237) the appropriate choice for the space E containing
e = {e% e!} is fundamental. We advocate

E =V, x L*(Q), (6.238)
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where
Vo={p|pec H(Q),p = g(0) on ~}. (6.239)

In order to solve (6.234)-(6.237), we use the following least-squares formu-
lation (where y plays the role of u in (6.234)-(6.237)):

min J(v) (6.240)
with
= %/Q(W(y(T) — O + |ye(T) — o' 2) dz, Vv = {o°, v}, (6.241)

where, in (3.241), the function y is the solution of

Y — Ay =01in Q, (6.242)
y=gono, (6.243)

Oy OBy
o T oon (6.244)
y(0) =°,  (0) =o', (6.245)

The choice of J is directly related to the fact that the natural energy £(-)
associated with the system is defined by

e®) =3 [ (V97 + ) de. (6.246)

Assuming that e is the solution of problem (6.240), it will satisfy the follow-
ing equation

(J'(e),v) =0, Vv € Ey, (6.247)

where, in (6.247), Eg = Vo x L?(Q) (with Vo = {¢ | ¢ € HY(2), = 0 on v})
and where (-,-) denotes the duality pairing between Ej and Ey (Ej: dual
space of Ep). In (6.247), J' denotes the differential of J.

Problem (6.247) can be solved by a conjugate gradient algorithm (de-
scribed in Section 6.13.6) operating in F; in order to implement this algo-
rithm, we need to be able to compute J'(v),Vv € E; this is the object of
the following section.

6.13.5. Calculation of J'

To compute J' we use a perturbation analysis: starting from (6.241), we
obtain

0J(v) = (v),6v)
= /v W0 —y(T)) - V&° d:v+/(U1 — w(T))bv' da
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+ / V(y(T) —v°) - Véy(T) dz
Q

+ [ @(T) = ")ou(T) da. (6.248)
We also have from (6.242)—(6.245):
Sy — Aby = 0 in Q, (6.249)
6y =0on o, (6.250)
(a—a- + Bat> by=0o0n X, (6.251)
6y(0) = 6v°,  6y(0) = dv'. (6.252)

Consider now a function p of z and ¢ such that the function p(t) :  — p(z, t)
vanishes on 7; next, multiply both sides of (6.249) by p, integrate on @ and
then by parts. It follows then from (6.250), (6.251) that

/5ytpdx|g—/ 6yptdz|(7;+/pttéydzdt-l-/QVp-Véydmdt
Q Q Q

+ / Sypdr|T — / pebydl dt = 0. (6.253)
T b

Suppose that p satisfies

/(pttz+Vp-Vz)da:—/ptzdI‘=0, Vz € Vo,p=0on o, a.e. on (0,T);
Q r

(6.254)
(6.254) is equivalent to
pit —Ap=10in Q, (6.255)
p=0ono, (6.256)
9 Op _

Using (6.252), equation (6.253) reduces then to
/6yt d:c—/ sy(T)pe(T dw+/5y(T p(T)dl
=/6yt0p(0 dm—/&yOptO dx+/6y0p0 dr
Q Q T

= / p(0)6v! dx — / p:(0)60° dz + / p(0)60°dI. (6.258)
Q Q r
Let us define p(T) and p¢(T) by
p(T) = y(T) — v’ (6.259)
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and

/ p(T)zdx = /(yt(T) —ohzdl - / V(y(T) —°) - Vzdz, Vz € V,
Q r Q

(6.260)
respectively. Finally, using (6.248) and (6.258)—(6.260), with z = éy(T),
shows that

(J'(v),w) = /QV(vO—y(T))-Vdex—/th(O)dex

+ /F p(0)w® dT" + /Q p(Oyw! dz + /Q (0! = (7)) da,
vw = {w’ w!'} € Ey, (6.261)

where, in (6.261), p is the solution of the adjoint equation (6.255)—(6.257),
completed by the ‘final conditions’ (6.259), (6.260).

Remark 6.33 Relations (6.260) and (6.261) are largely formal; however, it
is worth mentioning that the discrete variants of these two relations make
sense and lead to algorithms with fast convergence properties.

Remark 6.34 The well-posedness of problem (6.240) is discussed in Bardos
and Rauch (1994), where sufficient conditions for existence and uniqueness
are given.

6.13.6. Conjugate gradient solution of the least-squares problem (6.240)

A conjugate gradient algorithm for the solution of the linear problem
(6.247) (equivalent to problem (6.240)) is given by
Step 0: Initialization

ep = {ed,ed} is given in E. (6.262)

Solve the following forward wave problem

— Ay =0i 2
(9t2 Yo 0 in Q, (6 63)1
Yo = g on o, (6.263)2
Oyo |, Oyo
e A i L by 2
B + gT Oon X, (6.263)3
0
40(0) = €, %(0) - (6.263)4
Solve the following backward wave problem
&*po
—— —Apg =01 .264

po =0 on o, (6.264)2
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%p,f - % =0on X, (6.264)3
with po(T) and (8po/0t)(T) given by
0

po(T) = 7;1—0(T) ~ e, (6.264)4

respectively.
Define next go = {98,946} € Eo(= Vo x L*(Q)) by

[Vh-Vedr = [ V(e -w(T) Vzda~ [ F0)zdz
Q Q

o 0t (6.265);
+/p0(0)zdF, Vz € W,
r
8
96 = Po(0) + €p — %(T), (6.265)q
and then
wl =gl (6.266)

For k > 0, suppose that ek, gk, Wi are known, we compute then egi1, Sk+1,
Wg41 as follows

Step 1: Descent

B2 Ay =01in Q, (6.267);
gk =0on o, (6.267)2
Ok | OUk _
Bt T on - 0on X%, (6.267)3
o7
x(0) = wy, %(0) = wy. (6.267)4
Solve then
8P _ .
—— —Apy =01in Q, (6.268);
ot
Pr =0 on o, (6.268)2
Obx  OPk
5% op —0on (6.268)3
with pr(T) and (0P /0t)(T) given by
o7
e(T) = () - w}, (6.268)4

YT
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aaik(T)zda:—/pk(T zdl — /v (T) —wl) - Vzdz, Vz € Vp,
(6.268)5
respectively. Define next gx = {go, gk} € Vo x L?(Q) b
/QVg,(g-vzdm = /v (T)) - Vzdz — 6”’“(0)
/ £(0)2dT, ¥z € Vi,
(6.269)1
1 - 1 Ok
9k = Pr(0) + wi — = ~(T), (6.269),

and then pyx by

pr = /Q (IVGRI + lgi|?) dz / /Q (Vg Vul + ghwl) dz. (6.270)
We update then e and gi by

€rt1 = € — PpWg, (6.271)

8k+1 = Bk ~ Pk8k- (6.272)

Step 2: Test of the convergence and construction of the new descent direc-
tion. 1f (o990 l? + gk 1[2) d2)/2/ oIV g2 + gd1?) da)1/? < e take
e = ex41; if not, compute

* /sz(w92+1|2 + Igi+1l2)dw//Q(IV9212 +lgil)de  (6:273)

and update Wi by
Wi+l = Bk+1 + Ve Wk- (6.274)
Dok =k+1 and go to (6.267).

Remark 6.35 Algorithm (6.262)—(6.274) looks complicated at first glance.
In fact, it is not that complicated to implement since each iteration requires
basically the solution of two wave equations such as (6.267) and (6.268) and
of an elliptic problem such as (6.269);. The above problems are classical
ones for which efficient solution methods already exist.

Remark 6.36 Algorithm (6.262)—(6.274) can be seen as a variation of the
asymptotic method mentioned in Section 6.13.1; there, we integrate the pe-
riodically excited wave equation until we reach a periodic solution (i.e. a
limit cycle). What algorithm (6.262)—(6.274) does indeed is to periodically
measure the lack (or defect) of periodicity and use the result of this measure
as a residual to speed up the convergence to a periodic solution. In fact,
a similar idea was used in Auchmuty, Dean, Glowinski and Zhang (1987)
to compute the periodic solutions of systems of stiff nonlinear differential
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equations (including cases where the period itself is an unknown parameter
of the problem).

6.13.7. An FD/FE implementation

The practical implementation of the previously presented control-based
method is straightforward. It is based on a time discretization by the centred
second-order accurate explicit FD scheme, already employed in Sections 6.8
and 6.9. This scheme is combined to piecewise linear FE approximations
(as in Sections 6.8 and 6.9) for the space variables; we use mass lumping —
through numerical integration by the trapezoidal rule — to obtain a diagonal
mass matrix for the acceleration term. The fully discrete scheme has to
satisfy a stability condition such as At < Ch, where C is a constant. To
obtain accurate solutions, we need to have h at least ten times smaller
than the wavelength; in fact, & has to be even smaller (& ~ A/20) in those
regions where internal rays are trapped by successive reflections. For the
mesh generation, the advancing front method proposed by George (1971)
has been used; this method (implemented at INRIA by George and Seveno)
gives homogeneous triangulations (see the following figures).

6.13.8. Numerical experiments.

In order to validate the methods discussed in the above sections, we have
considered the solution of three test problems of increasing difficulty, namely
the scattering of planar incident waves by a disk, then by a nonconver re-
flector which can be seen as a semi-open cavity (a kind of — very — idealized
air intake) and finally the scattering of a planar wave by a two-dimensional
aircraft related body. For these different cases the artificial boundary is lo-
cated at a 3\ distance from B and we assume that the boundary of the
reflector is perfectly conducting.

The following results have been obtained by Bristeau at INRIA (see Bris-
teau, Glowinski and Périaux (1993a,b,c) for further numerical experiments
and details).

Scattering by a disk. Before discussing our numerical experiments, let us
observe that model (6.234)—(6.236) assumes, implicitly, that its solutions
propagates with velocity 1, implying that, here, the wavelength is equal to
the period. If ¢(> 0) is different from 1, we shall rescale z and ¢, so that
¢ = 1. In the following examples, the data are given in the MKSA system
before rescaling.

Ezample 1 (Scattering by a disk) For this problem, B is a disk of radius
0.25 m, k = 27 f with f = 2.4 GHz, implying that the wavelength is 0.125 m;
the disk is illuminated by an incident planar wave coming from the left.
The artificial boundary is located at a distance of 3\ from B. The FE
triangulation has 18,816 vertices and 36,970 triangles; the mean length of the
edges is A\/15, the minimal value being /28, while the maximal one is A/10.
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Fig. 61. Contours of the scattered field (real component).

The value of At is T/35. To obtain convergence of the iterative method, 74
iterations of algorithm (6.262)-(6.274) were needed (with e = 5 x 1075 for
the stopping criterion) corresponding to a 3 min computation on a CRAY2.
Figure 61 shows the scattered field €® (real component of the Helmholtz
problem solution). For this test problem where the exact solution is known,
we have compared on Figures 62 and 63 the computed solution ( ) with
the exact one (------ ) on two cross sections (incident direction, opposite to
incident direction, respectively). Of course, for this problem, the asymptotic
method (just integrating the wave equation from 0 to nT, n ‘large’) is less
CPU time consuming; we have chosen this example just to test the accuracy
of the approximations.
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2.0 ¢ 4
1.0 4
0.0 i
-1.0 4
2.0 4
0.0 0.2 0.4 0.6 0.8
sol. calculee —_—— sol. exacte .
Fig. 62. Comparison between exact (- ---- ) and computed (——) scattered fields

€%(z1,0) (incident side).

0.0 0.2 0.4 0.6 0.8
sol. calculee - s0l. exacte

Fig. 63. Comparison between exact (------ ) and computed (——) scattered fields
e%(z1,0) (shadow side).
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Remark 6.37 We can substantially increase the accuracy by using on I’
instead of (6.232), second-order absorbing boundary conditions like those
discussed in Bristeau, Glowinski and Périaux (1993c).

Ezample 2 (Scattering by semi-open cavities) We have considered two semi-
open cavities. We choose f = 3 GHz implying that the wavelength is 0.10 m.
For the first cavity, the inside dimensions are 4\ x A and the thickness of the
wall is A/5. The FE triangulation has 22,951 vertices and 44,992 triangles.
The value of At corresponds to 40 time steps per period (i.e. At = T/40).
We consider an illuminating monochromatic wave of incidence a = 30°,
coming from the right. The contours of the scattered fields ° (real part)
and e!/k (imaginary part) are shown on Figures 64 and 65, respectively.
The convergence is reached with 136 iterations (¢ = 5x 10~?), corresponding
to 8 min of CPU time on a CRAY2. Figure 66 shows the convergence of
the residuals Re‘,)c and Rel associated to the controllability method; these
residuals are defined by

lexsr — ekllz)
llel — esll L2

|l€2+1 - 62“L2(Q)

Red =
||e? - €8||L2(Q) ’

1 _
Rek—

The asymptotic method gives the same solution, but, for this nonconvez
obstacle, the convergence is much slower (800 iterations, 18 min of CPU
time on a CRAY2) than the convergence of the controllability method, as
shown on Figure 67.

We have considered a second semi-open cavity for the same frequency
and wavelength; the inside dimensions of this larger cavity are 20\ x 5,
the wall thickness being A. For this problem where many reflections take
place inside the cavity, we need a fine triangulation. The one used here has
208,015 vertices and 412,028 triangles, with A/30 as the mean length of the
edges inside the cavity (A/20 outside). We have taken At = T/70. The test
problem corresponds to an illuminating wave of incidence o = 30°, coming
from the right. The contours of the total field related to e® are shown on
Figure 68. Figure 69 shows the convergence of the cost function J(ex) with
J(-) defined by (6.241); we have also shown on Figure 69 the convergerrtce to
zero of the two components of this cost function (the one related to €2, and
the one related to e},).

For this difficult case the convergence is slower than for the above cavity
problem (300 iterations instead of 136).

We have shown on Figure 70 some details of the FE triangulation close
to the wall at the entrance of the cavity.

Ezample 3 (scattering by a two-dimensional aircraft related body) We con-
sider the reflector defined by the cross section of a Dassault Aviation Falcon
50 by its symmetry plane; the shape of the air-intake is given and we have
artificially closed it in order to enhance reflections. The plane length is about
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18 m, while its height is 6 m. We take f = 0.6 GHz, so that A = 0.5 m.
The FE mesh has 143,850 vertices and 283,873 triangles; Figure 71 shows
an enlargement of the mesh near the air intake. We have used At = 7'/40.
We consider an illuminating wave with a = 0° as angle of incidence. The
contours of the total field (real part) are presented on Figure 72; we observe
the shadow region behind the aircraft. The convergence (for e = 5 x 107°)
is obtained after 260 iterations, corresponding to 90 min of CPU time on a
CRAY?2; Figure 73 shows the convergence of J(e) to 0 as k — +00.

Fig. 64. Contours of the scattered field (real part; a = 30°).

Remark 6.38 For all the test problems discussed above, we have used
a direct method based on a sparse Cholesky solver to solve the (discrete)
elliptic problem encountered at each iteration of the discrete analogue of
algorithm (6.262)—(6.274). Despite the respectable size of these systems (up
to 2 x 10° unknowns) this part of the algorithm takes no more than a few
percent of the total computational effort.

Indeed, most of the computational time is spent integrating the forward
and backward wave equations; fortunately this is the easiest part to par-
allelize (hopefully in the near future; see Bristeau, Erhel, Glowinski and
Périaux (1993)) as it is based on an ezplicit time discretization scheme.
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Fig. 65. Contours of the scattered field (imaginary part; a = 30°).

6.13.9. Further comments

We have discussed in this section a controllability based novel approach to
solving the Helmholtz (and two-dimensional harmonic Maxwell) equations
for large wavenumbers and complicated geometries. The new method so far
appears to be more efficient than traditional computational methods which
are based on either time asymptotic behaviour or linear algebra algorithms
for very large indefinite linear systems.

The new methodology appears to be promising for the three-dimensional
Mazwell equations and for heterogeneous media, including dissipative ones.
For very large problems, we shall very probably have to combine the above
method with domain decomposition and/or fictitious domain methods, and
also to higher-order approximations, to reduce the number of grid points.

6.14. Further problems

In this section we have discussed controllability issues concerning wave equa-~
tions such as

ug — ¢ Au = 0; (6.275)
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RES1

Fig. 66. Convergence of the residual (control solution): ——, residual for y;
------ , residual of y;.

a basic tool for studying exact or approximate controllability for equations
such as (3.275) has been the Hilbert Uniqueness Method (HUM). Actually,
HUM has been applied in Lagnese (1989) to prove the exact boundary con-
trollability of the Mazwell equations

OE O0H )
EE'—VXH—O, ME“{"VXE—OIHQ, (6276)
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Fig. 67. Convergence of the residual (asymptotic solution):
------ , residual of y;.

V.E=V-H=0inQ

, residual for ;

(6.277)

(see also Bensoussan (1990)); most computational aspects still have to be

explored.

The Hilbert Uniqueness Method has been applied in Lions (1988b) and
Lagnese and Lions (1988) to the exact or approximate controllability of
systems (mostly from elasticity) modelled by Petrowsky’s type equations.
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Fig. 68. Contours of the total field (o = 30°).

Concerning the numerical application of HUM to the exact controllability
of Petrowsky-type equations modelling elastic shells vibrations we refer to
Marini, Testa and Valente (1994).

Finally, very little is known about the exact or approximate controllability
of those (nonlinear) wave (or Petrowsky’s type) equations modelling the
vibrations of nonlinear systems; we intend, however, to explore the solution
of these problems in the near future.

7. COUPLED SYSTEMS

In Sections 1 to 6 we have discussed controllability issues for diffusion and
wave equations, respectively. The control of systems obtained by the cou-
pling of different types of equations brings new difficulties which are worth
discussing, therefore justifying the present section. The numerical aspects
will not be addressed here, but in our opinion this Section can be a starting
point for investigations in this direction.

In this Section, we shall focus on the controllability of a simplified Ther-
moelasticity system but it is likely that the techniques described here can
be applied to systems modelled by more complicated equations.

7.1. A problem from thermoelasticity

Let 2 be a bounded domain of RY, d < 3, with a smooth boundary T.
Motivated by applications from Thermoelasticity we consider the following
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Fig. 69. Convergence of J(ey) (——), of the e} component of J(ex) (- - -), and
of the e} component of J(ex) (------ ).

system

2

%t—Z—Ay+aV9=0inQ=Q><(O,T), (7.1

o6 oy
- _ L =01 1
p A8 + aV 5 0in Q, (7.1)2
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Fig. 70. Enlargement of the mesh close to the cavity intake.

where y = {y;}%;,0 > 0. In (7.1), y (respectively §) denotes an elastic
displacement (respectively a temperature) function of z and ¢. Scaling has
been made so that the constants in front of —A are equal to 1 in both

equations.
The initial conditions are
Oy
y(0) =0, ?9?(0) =0, (7.2)
6(0) = 0. (7.2)9

The control is applied on the boundary of Q, actually on Ty C T. Also, it is
only applied on the component y of the state vector {y,6}.

Considering the boundary conditions, we shall consider the two following
cases:

Case I
[ von¥y=Tyx(0,T),v= {vi}f=1,
Y=100n2\Z, =T x (0,7)
and
0 = 6y is given on . (7.4)
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Fig. 71. Enlargement of the mesh close to the aircraft air intake (by courtesy of
Dassault Aviation).

Case I1

oy _ { v on X, (7.5)

on 0 on X\
with (7.4) unchanged.

Remark 7.1 One can consider a variety of other types of boundary condi-
tions and controls. The corresponding problems can be treated by methods
very close to those given below.

Remark 7.2 In order to simplify the proofs and formulae below, we shall
take
00 = Oa (7'6)

but this is just a technical detail.

In the following sections, we shall study the spaces described by y(T'),
(9y/0t)(T) and 6(T); we shall show that under ‘reasonable’ conditions, one
can control y(7T') and (8y/0t)(T) but not 6(T').

Remark 7.3 Controllability for equations (7.1)—(7.4) has been studied in
Lions (1988b,Vol. 2) (see also Narukawa (1983)). We follow here a slightly
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. 200. 400. 600. 800.

Fig. 72. Convergence of the residuals.

different approach, our goal being to obtain constructive approximation
methods.

7.2. The limit cases a — 0 and o — +oc

In order to obtain a better understanding, the limit cases @ — 0 and a —
+o00 are worthwhile looking at. Moreover, they have intrinsic mathematical
interest, particularly when o — +o0.
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Fig. 73. Contours of the real part of the total field around a Falcon 50 two-
dimensional cross section (a = 0°) (by courtesy of Dassault Aviation).

7.2.1. The case a — 0.

This case is simple. The coupled system (7.1)—(7.4) (or its variant (7.1),
(7.2), (7.4), (7.5)) reduces to uncoupled wave and heat equations. The con-
trol acts only on the y components; we then have

2

aatz %(0):0, y=vonXy y=0onX\%.
(7.7)

Since A is a diagonal operator we recover cases discussed in Section 6.

Ay=0inQ, y(0)=

Remark 7.4. The general linear elasticity system (with A replaced by
AA+pgraddiv; A, p: Lamé coeflicients) would lead to similar considerations,
with more complicated technical details.

Remark 7.5. Similar considerations apply when (7.3) is replaced by (7.5).

7.2.2. The case a — 400 (boundary conditions (7.3).)
We shall assume (this is necessary for what follows) that

/ v -ndl = 0. (7.8)
T'o

Then, assuming v smooth enough (a condition which does not restrict the
generality, since we are going to consider approzimate controllability) and

8
v=00ndTyx (0,T), Vo= Vlt ~0=0, (7.9)

one can construct a function ¢ such that

{ ¢ is smooth in 2 x (0,T), V-¢=0inQx (0,7),

p=vonXy ¢=0o0nX\Xg. (7.10)
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Then if we introduce z = y — ¢, we obtain

0%z 0%¢ )
5; — Az + aVi = — ((‘%2 A¢> ( ) m Q, (711)1
06 0z .
a—AH—}— aV - o =0in Q, (7.11)9
0z
z=0, 6=00n%, z(0)= E(O) =0, 6(0)=0. (7.11)3
We now multiply (7.11); (respectively (7.11)2) by 0z/0t (respectively ).
We obtain with obvious notation (|| - | = || - | 2())
Oz 0z
2 2 2 2 o
2 (1512 + 192 +1612] + 19612+ [ (v0,52) + (v 52.0)]
0z
_ (f, E)‘ (7.12)
But
0z 0z
(vo, E) (v . E’9> ~0, (7.13)

so that (7.6) leads to a priori estimates which are independent of a.
It follows then, that if we denote by {z,,6,} the solution of (7.11) one
has when o — 400

{')za 0z * s [e'e) .l 2
{za, W} — {z, 5t} weakly™ in L*°(0,T; Hg(2) x L*(2)),

o — 0 weakly in L2(0,T; H}(Q)) and weakly * in L>(0, T; L*(Q2)).
(7.14)
Returning to the notation {y,8}, we have that y, — y, where y is the
solution of

2y
-~ Ay+Vp=0in@, V.-y=0inQ,

3t2 5
y(0) = B)t,( )=0, y=vonZyy=0onX\X.

(7.15)

We clearly see why (7.8) is necessary (from the divergence theorem). We
observe that the system satisfied by {y, 8} is again uncoupled at the limit
when o — +oc, so that the best thing we can hope is the controllability of
{y(T), (8y/0t)(T)}, but not, of course, the controllability of (T).

Remark 7.6. A systematic study of the controllability of system (7.15)
remains to be done (see, however Lions (1990b) for a discussion of the con-
trollability of system (7.15) under strict geometrical conditions).

Remark 7.7. Similar results hold when (7.3) is replaced by (7.5). Then no
additional condition such that (7.8) is needed.
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7.3. Approximate partial controllability

We now return to the case 0 < a < 4+00; we assume that

ot
spans a dense subset of (L2(Q) x H~1(Q))4,

where {y(v),0(v)} is the solution of (7.1)—(7.4).

{ when v spans (L?(Z))?, then {y(T;v), a—y(T;v)} (7.16)

Remark 7.8. Sufficient conditions for (7.16) to be true are given in Chapter
1 of Lions (1988b, Vol. 2); they are of the following type:

(i) o is ‘sufficiently large’,
(ii) 0<a<a.

Necessary and sufficient conditions for (7.16) to be true do not seem to
be known. Interesting results have been obtained by E. Zuazua (1993).

We can then consider the following optimal control problem

inf 1/ Iv|2dZ, v e (L3(Zo))? such that
v 2 /5 5 (7.17)

y(T;v) € z° + By B, 8—};(T;v) ez + 3 B_,
where B (respectively B_;) denotes the unit ball of (L?(Q2))¢ (respectively
of (H1(Q))%).

Problem (7.17) has a unique solution; it can be characterized by a varia-
tional inequality which can be obtained either directly or by duality methods.
Here we use duality, because (among other things) it will be convenient for
the next section (where we introduce penalty arguments).

Formulation of a dual problem We follow the same approach as in
Section 6.4. We define an operator L from (L?(Xg))? into (H~(€))¢ x
(L(©))¢ by

Lv = {—%(T; v),y(T;v)} . (7.18)
We define next Fj and F, by
Fi(v) = 1/ [v|?dx, (7.19)
2 Jx,

0if f®c —z' + 3B_;, flez’+ 6B,

400 otherwise. (7.19)2

Fy(£0,f1) = {
Problem (7.17) is then equivalent to

inf [F Fy(Lv)]. 7.20
ve(ﬁzn(zo))d[ 1(v) + F2(Lv))] (7.20)
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By duality, we obtain

~ ~

inf Fi(v)+ Fp(Lv)] = — inf F}(L*f) + Fy(-f)).
el PRI == D + B )
(7.21)
The operator L* is defined as follows. We introduce ¢, ¥ solution of
- .
a—f —ap+av? om0,
%t 6 ot (7.22)
—E—Azﬁ—av-g&:OinQ,
5 5 0P 5 .
o(T) =1 e (HQ), Z(D) =1 e (LX), $(T)=0, (7.22);
=0, ¢=0onZX. (7.22)3
Then if f = {f°, 1}, we have
L*f = g—: on Yg. (7.23)

We obtain thus as dual problem (i.e. for the minimization problem in the
right-hand side of (7.21))

1
inf —/
f'[Q 2o

- /Q 20 B de + Bulfl msgapye + Boll ' lluaape|  (7:29)

2

92 4% + (2, £9)

on

Remark 7.9. The same considerations apply to the Neumann controls (i.e.
of type (7.5)).

7.4. Approximate controllability via penalty

We consider again (7.1)—(7.4) (with 8y = 0) and we introduce (with obvious
notation):

ﬁHB_y
ot

1 k
Je(v) = 5/2 IVl2dE+7°||y(T;V)—ZOHQL2+ 5 157 (T5v) =2 |- (7.25)
0

In (7.25) we have

k= {ko,k1}, ki>0, k; ‘large’ fori=0,1. (7.26)

The control problem
inf Ji(v 7.27
e S k(V) (7.27)

has a unique solution, ug.
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Considerations similar to those of Section 6, apply; thus we shall have

oy
ot (T uk) €z + 61B_1, (728)
for k ‘large enough’, the ‘large enough’ not being defined in a constructive
way.

In order to obtain estimates on the choice of k, we will now consider
the dual problem of (7.25). We consider again, therefore, the operator L:
(L2(%0)) — (1)) x (LA(Q))", defined by

Lw) = {-Z T, ¥(Tiv)

y(T;ui) € 2° + By B,

and we introduce

Fa(f) = ko[If' — 2°/[72 + Lk £ + 2 (131 (7.29)
With Fi(-) still defined by (7.19);, we clearly have
inf J = inf [F F3(Lv)). 7.30
ve(lgl(Eo))d k(V) VG(E%EO))d[ I(V) " 3( V)] ( )
It follows by duality that
inf J = —inf[F{(L*f) + F5(—f 7.31
vetrh ) k(v) = —inf[FY (L7F) + F5(-—f)] (7.31)

with f = {fo, f1} € (H(Q))¢ x (L?(R))¢ in (7.31).
After some calculations, we obtain

. . 1 dp|?
FI(v) = - f—/ 9@
inf J(v) in [2 5,
1 012 0 gl
g 1€y + (26|, (7.32)

The dual problem to the control problem (7.27) is therefore

R Op |2
11%f li /20

an
with £ = {f0, f1} € (H}(Q))¢ x (L3(2))? in (7.33).
Let us denote by fi the solution of (7. 33) it is characterized (with obvious
notation) by

fi = {£, £} € (Hy()* x (L*(Q))°,

Opr Op 1/ 1 el 1/ 0 0
ok 9P asy = [ gl.¢ 2 [ v v
% On  On +k0 a0k dw+k1 ka Vide

- /on-fl dz — (21, £9)
vE = {f0 1} e (H}(Q)? x (L3(Q))% (7.34)

1
d 1)12 _/ 0 gt
2+2k0||f |72 Qz f'dz

48+ s - [ 20 £ de o 901, + 2 f°>]
(7.33)
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Similarly, the solution f3 of problem (7.24) is characterized by the following
variational inequality

f5 = {f5, 5} € (Hg ()% x (L}()*

0 0
EO% 5,2 (2= 08) S + Br (1811 my — 18511 1zy) + BoClIF* |22 — 1£3112)
> [ - ghde- @),

VE € (H () x (L2(Q))~ (7.35)

Taking f = fi in (7.34) (respectively f = 0 and f = 2fs in (7.35)) we obtain

/ dz+i/ 1f,§|2dz+l/ V2 da
%o ko Ja k1 Ja

:/zo-f,g dz — (2, £9), (7.36)
Q

Do |

Opp

I8k

Assuming that problems (7.34), (7.35) have the same solution, it follows
from (7.36), (7.37) that

‘ d2+ﬁ0||fﬁ;|L2+ﬁl||fﬁ|H1 :/on-fﬂldx—(zl,fg). (7.37)

1 1
oo IElIZe + Ik Iy = Bollfill oz + BullERl g (7.38)

which suggests the following simple (may be too simple) rule: adjust ko, k1
so that

681122kt = Bo,  IERNZa kit = 61 (7.39)

We plan numerical experiments to validate (7.39).
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